首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Condensation of 1,3-dihydro-2,3-dioxo-2H-indoles (la-c) with galactaric acid bis hydrazide (2) gave the corresponding galactaric acid bis[2-(1,2-dihydro-2-oxo-3H-indol-3-ylidene)hydrazides] (3a-c). Acetylation of the latter compounds with acetic anhydride in the presence of pyridine at ambient temperature gave the 2,3,4,5-tetra-O-acetylgalactaric acid bis[2-(1,2-dihydro-2-oxo-1-substituted-3H-indol-3-ylidene)hydrazides] (4b-d). Heterocyclization of the tetra-O-acetates 4b-d by heating with thionyl chloride afforded the double headed acyclo C-nucleosides: 1,2,3,4-tetra-O-acetyl- 1,4-bis[9-substituted-1,3,4-oxadiazino[6,5-b]indol-2-yl-1-ium]-galacto-tetritol dichlorides (5b-d). Structures of the prepared compounds were elucidated from their spectral properties.  相似文献   

2.
The reaction of methyl 4,6-O-benzylidene-3(2)-deoxy-- -erythro-hexopyranosid-2(3)-ulose with carbon disulfide, alkyl iodide, and sodium hydride gave methyl 4,6-O-benzylidene-3(2)-[bis(alkylthio)methylene]-3(2)-deoxy-- -erythro-hexopyranosid-2(3)-uloses. Methyl 4,6-O-benzylidene-2-[bis(methylthio)methylene]-2-deoxy-- -erythro-hexopyranosid-3-ulose (5) reacted with aromatic amines to give, in a rearrangement process, N-aryl-2-aryliminomethyl-4,6-O-benzylidene-2-deoxy-- -erythro-hex-1-enopyranosylamin-3-uloses. The reaction of 5 which hydrazine hydrate afforded 5-methylthio-(methyl-4,6-O-benzylidene-2,3-dideoxy-- -erythro-hexopyranosido)[3,2-c]pyrazole.  相似文献   

3.
Ametryne and Prometryne as Sulfur Sources for Bacteria   总被引:2,自引:2,他引:0       下载免费PDF全文
Bacteria were isolated that could utilize quantitatively the s-triazine herbicide prometryne [N,N′ -bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine] or ametryne [N-ethyl-N′-(1-methylethyl)-6-(methylthio)-1,3,5-triazine- 2,4-diamine], or both, as a sole source of sulfur for growth. The success of enrichments depended on previous exposure of the soil inoculum to s-triazine herbicides. Deaminoethylametryne [4-(1-methylethyl)amino-6-(methylthio)-1,3,5-triazine-2-(1H)-one], methylsulfonic acid, and sodium sulfate could also be used as sulfur sources. Utilization of a compound was quantified as the growth yield per mole of sulfur supplied. Yields were about 6 kg of protein per mol of sulfur. The product of the desulfuration of an s-triazine was identified as the corresponding hydroxy-derivative. This is the first substantiated report of the utilization of these s-triazines as sulfur sources by bacteria.  相似文献   

4.
The reaction of the bis(triflates) 1,2-bis[2-(trifluoromethylsulfonyloxy)ethyl]benzene (1), 1,2-bis[3-(trifluoromethylsulfonyloxy)propyl]benzene (3) and 1,2-bis{2-[2-(trifluoromethylsulfonyloxy)ethyl]phenyl}ethane (6), respectively, with the carbonyl metalates [M(CO)4]2- (M=Os (a), Ru (b), Fe (c)) results in the formation of the osmaorthocyclophanes 2a, 4a, 7a and 8a, the ruthenacylophane 2b and the ferracyclophanes 2c and 7c, respectively. Carbon monoxide insertion into the Fe-Cσ bonds of the ferracycles 2c and 7c, respectively, affords the ketones 3-oxo[5]orthocyclophane (9) and 3-oxo[5.2]orthocyclophane (11). The structure of 2a was investigated by an X-ray structural analysis. 2a crystallizes in the monoclinic space group P21/n with Z=4.  相似文献   

5.
The chemical synthesis of four phosphonate-containing phosphatidylserine analogs namely, L-serine (±)-[2,3-bis(hexadecyloxy) and 2,3-bis(Palmitoyloxy)-propyl] phosphonates, and L-serine (±)-[3,4-bis(hexadecyloxy and 3,4-bis(palmitoyloxy)-butyl]phosphonates is described. (±)-2,3-Bis(hexadecyloxy) and 2,3-bis(palmitoyloxy)-propylphosphonic acids and (±)-3,4-bis (hexadecyloxy)butylphosphonic acid were prepared by reaction of tris(trimethylsilyl) phosphite on the corresponding haloalkane. Condensation of the above phosphonic acids or (±)-3,4-bis (palmitoyloxy)butylphosphonic acid with N-carboxy-L-serine dibenzyl ester in the presence of trichloroacetonitrile or triisopropylbenzenesulfonyl chloride yielded the protected serine intermediates, which on hydrogenolysis gave the desired L-serine analogs. By a similar route, 1,2-dihexadecyl-rac-glycero-3-phosphoric acid was converted to 1,2-dihexadecyl-rac-glycerophospho-L-serine [L-serine (±)-2,3-bis(hexadecyloxy)propyl hydrogen phosphate(ester)].  相似文献   

6.
Cobalt(I) complexes, modified with (R)-(6,6'-dimethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) [Co((R)-MeO-Biphep)(CO)3]X (X = BF4 [1] or OTf [2]), were synthesized and characterized. The compounds have a trigonal bipyramidal structure and are fluxional. They were tested as catalyst precursors for the enantioselective cyclocarbonylation of 4,4-bis(carboethoxy)hept-5-en-1-yne 3. Enantioselectivities up to 78.5% were attained. However, activity and stereoselectivity are lower compared to catalytic systems based on Co2(CO)8 modified with the same atropisomeric ligand.  相似文献   

7.
The N-terminal pentapeptide of the lipoprotein from the outer membrane of Escherichia coli was obtained by coupling S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine to O-tert-butylseryl-O-tert-butyl-seryl-asparaginyl-alanine tert-butyl ester followed by deprotection with trifluoroacetic acid. The tetrapeptide was built up from alanine tert-butyl ester with N-9-fluorenylmethyloxycarbonyl protected amino acids. S-[2,3-Bis(palmitoyloxy)propyl]-N-palmitoylcysteine was obtained from N,N'-dipalmitoylcystine di-tert-butyl ester via reduction to the thiol, and S-alkylation with racemic 3-bromo-1,2-propanediol followed by esterification with palmitic acid in the presence of dicyclohexylcarbodiimide/dimethylaminopyridine and deprotection with trifluoroacetic acid. The compounds were characterized unequivocally by 13C-NMR and mass spectra. The diastereomers of S-[2,3-bis(palmitoyloxy)propyl]-N-palmitoylcysteine tert-butyl ester with opposite configuration at the propyl-C-2 atom could be separated on a silica-gel column.  相似文献   

8.
The bis-phosphines, 1,1′-[1,2-phenylenebis(methylene)]bis-3,5-diaza-1-azonia-7-phosphatricyclo[3.3.1.1]decane dibromide (1), 1,1′-[1,3-arenebis(methylene)]bis-[3,5-diaza-1-azonia-7-phosphatricyclo [3.3.1.1]decane dibromide (arene = phenyl (2), tolyl (3), anisolyl (4)), and 1,1′-[1,4-phenylenebis(methylene)]bis-3,5-diaza-1-azonia-7-phosphatricyclo[3.3.1.1]decane dibromide (5) were prepared in over 90% yield by refluxing 1,2-bis(bromomethyl)benzene, 1,3-bis(bromomethyl)benzene, 1,3-bis(bromomethyl)-5-methyl-benzene, 1,3-bis(bromomethyl)-5-methoxy-benzene, and 1,4-bis(bromomethyl)benzene with 1,3,5-triaza-7-phosphaadamantane (PTA) in acetone or chloroform. Compounds 1-5 are the first phosphines reported that contain two PTA moieties. All five compounds were characterized by ESI-MS, elemental analysis, 1H, 13C, and 31P NMR spectroscopy, while 3 and 4 were additionally analyzed via single crystal X-ray diffraction. The relative positions of the PTA units on the aromatic ring as well as the substituents of the ring had a pronounced effect on the water-solubilities of the systems. The ortho compound (1, 2000 mg/mL) was more than two orders of magnitude more soluble than the para compound (5, 12.5 mg/mL). The meta substituted phenyl (2) and tolyl (3) compounds had solubilities (810 mg/mL) that were more than triple that of PTA (235 mg/mL) while the anisolyl analog (4) was half as soluble (121 mg/mL).  相似文献   

9.
The synthesis and anti-inflammatory activity of 4,5-dihydroxy-3-methyl-1H-pyrazolo[3,4-c]pyridazine (4), 4,5-dichloro-3-methyl-1H-pyrazolo[3,4-c]pyridazine (5), 4,-benzoyloxy-3-methyl-1-benzoyl-1H-pyrazolo[3,4-c]pyridazin-5yl benzoate (6), 3-methyl-N4,N5-bis(4-methylphenyl)-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (7), 4[[5-(4-carboxyanilino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4yl]amino]benzoic acid (8), N-[5-(benzoylamino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4-yl]benzamide (9) and 3-methyl-N4,N5-bis[4-(1H-benzimidazol-2yl)phenyl]-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (10) are being reported.  相似文献   

10.
Human platelets incubated with [32P]Pi and [3H]arachidonate were transferred to a Pi-free Tyrode's solution by gel filtration. The labile phosphoryl groups of ATP and ADP as well as Pi in the metabolic pool of these platelets had equal specific radioactivity which was identical to that of[32P]phosphatidate formed during treatment of the cells with thrombin for 5 min. Therefore, the 32P radioactivity of phosphatidate was a true, relative measure for its mass. The thrombin-induced formation of[32P]-phosphatidate had the same time course and dose-response relationships as the concurrent secretion of acid hydrolases. 125I-alpha-Thrombin bound maximally to the platelets within 13s and was rapidly dissociated from the cells by hirudin; readdition of excess 125I-alpha-thrombin caused rapid rebinding of radioligand. This binding-dissociation-rebinding sequence was paralleled by a concerted start-stop-restart of phosphatidate formation and acid hydrolase secretion. [3H]Phosphatidylinositol disappearance was initiated upon binding but little affected by thrombin dissociation and rebinding. ATP deprivation caused similar changes in the time courses for [32P]-phosphatidate formation and acid hydrolase secretion which were different from those of [3H]phosphatidylinositol disappearance. The metabolic stress did not alter the magnitude (15%) of the initial decrease in phosphatidylinositol-4,5-bis[32P]phosphate, but did abolish the subsequent increase of phosphatidylinositol-4,5-bis[32P]-phosphate in the thrombin-treated platelets. It is concluded that in thrombin-treated platelets (1) phosphatidate synthesis, but not phosphatidylinositol disappearance, is tightly coupled to receptor occupancy and acid hydrolase secretion in platelets, (2) successive phosphorylations to phosphatidylinositol-4,5-bisphosphate is unlikely to be the main mechanism for phosphatidylinositol disappearance, and (3) only a small fraction (15%) of phosphatidylinositol-4,5-bisphosphate is susceptible to hydrolysis.  相似文献   

11.
A N Jina  J Ralph  C E Ballou 《Biochemistry》1990,29(21):5203-5209
To synthesize an affinity matrix for isolation of D-myo-inositol 1,4,5-trisphosphate binding proteins, racemic 3-cyclohexene-1-carboxaldehyde was oxidized and converted to a mixture of trans-3,4-di-hydroxycyclohexane-1-carboxylic acid methyl ester isomers, which was phosphorylated and separated into (+-)-(1R,3R,4R)- and (+-)-(1R,3S,4S)-trans-3,4-bis[(diphenoxyphosphoryl)oxy]cyclohex an e-1- carboxylic acid methyl esters. Each of these racemic compounds was hydrogenolyzed and reacted with ethylenediamine to give a monoamide, N-(2-aminoethyl)-bis(phosphonyloxy)cyclohexane-1-carboxamide, that was coupled to cyanogen bromide activated Sepharose 4B to provide the desired affinity matrices. The intermediate trans-3,4-bis[(diphenoxyphosphoryl)oxy]cyclohexane-1-carboxylic acid methyl ester was also reduced with lithium borotritide to give the (hydroxy[3H]methyl)cyclohexane derivative, which was phosphorylated and hydrogenolyzed to yield trans-3,4-bis(phosphonyloxy)-1-[(phosphonyloxy)[3H]methyl]cy clohexane, a radiolabeled analogue of inositol 1,4,5-trisphosphate. The carboxamide was also coupled to 4-azidosalicylic acid, and the product was iodinated to provide a 125I-radiolabeled photoactivatable cross-linking derivative of cyclohexanediol bisphosphate.  相似文献   

12.
Reactivity of the dicopper(I) and dicopper(II) complexes supported by novel polyamine ligands L1 (1,11-bis(6-methylpyridin-2-yl)-2,6,10-triaza-2,6,10-tribenzylundecane) and L2 (5-benzyl-1,9-bis(6-methylpyridin-2-yl)-2,8-bis(6-methylpyridin-2-ylmethyl)-2,5,8-triazanonane) towards O(2) and H(2)O(2), respectively, has been investigated in order to shed light on the ligand effects on Cu(2)/O(2) chemistry. The dicopper(I) complex of L1 (1a) readily reacted with O(2) in a 2:1 ratio at a low temperature (-94 degrees C) in acetone to afford a mixture of (mu-eta2.eta2-peroxo)dicopper(II) and bis(mu-oxo)dicopper(III) complexes. The formation of these species has been confirmed by the electron spin resonance (ESR) silence of the solution as well as their characteristic absorption bands in the UV-visible region (gammamax= 350 and 510 nm due to the peroxo complex and approximately 400 nm due to the bis(mu-oxo) complex] and the resonance Raman bands at 729 cm(-1) [Deltanu (16(O2)-18(O2)) = 38 cm(-1)] due to the peroxo complex and at 611 and 571 cm(-1) [Deltanu(16(O2)-18(O2)) = 22 and 7 cm(-1), respectively] due to the bis(mu-oxo) complex. The peroxo and bis(mu-oxo) complexes were unstable even at the low temperature, leading to oxidative N-dealkylation at the ligand framework. The dicopper(I) complex of L2 (2a) also reacted with O(2) to give (mu-hydroxo)dicopper(II) complex (2b(OH)) as the product. In this case, however, no active oxygen intermediate was detected even at the low temperature (-94 degrees C). With respect to the copper(II) complexes, treatment of the (mu-hydroxo)dicopper(II) complex of L1 (1b(OH)) with an equimolar amount of H(2)O(2) in acetone at -80 degrees C efficiently gave a (mu-1,1-hydroperoxo)dicopper(II) complex, the formation of which has been supported by its ESR-silence as well as UV-vis (370 and 650 nm) and resonance Raman spectra [881 cm(-1); [Deltanu (16(O2)-18(O2)) = 49 cm(-1)]. The (mu-1,1-hydroperoxo)dicopper(II) intermediate of L1 also decomposed slowly at the low temperature to give similar oxidative N-dealkylation products. Kinetic studies on the oxidative N-dealkylation reactions have been performed to provide insight into the reactivity of the active oxygen intermediates.  相似文献   

13.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [(35)S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [(35)S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the alpha-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine gamma-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-(3)H]MeSH and [(35)S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine gamma-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 10(6)- to 10(7)-fold higher concentrations.  相似文献   

14.
A rapid filtration method was used to measure initial rates of 3-O-[3H]methylglucose uptake and thus estimate hexose transport system activity in isolated white fat cells. Insulin markedly stimulated the transport system activity and its effect was rapidly and completely reversible. In addition, such oxidants as vitamin K5 (50 muM), hydrogen peroxide (4mM), methylene blue (50 muM), and diamide (20 mM) also maximally activated 3-O-methylglucose transport and their effects were not additive to those of maximal concentrations of insulin. These oxidants had no effect on total cellular ATP levels under these conditions. Hexose transport system activity in either the presence or absence of these stimulatory agents was uniformly sensitive to inhibition by cytochalasin B. Treatment of fat cells with either 0.5 mM N-ethylmaleimide or 3 mM dithio(bis)nitrobenzoic acid abolished the ability of insulin or oxidants to activate hexose transport system activity. Control transport activity was not significantly influenced by these agents. Fat cells treated with dithio(bis)nitrobenzoic acid completely regained the ability to respond to insulin or vitamin K5 after removal of the agent by washing in low concentrations of reductant. Elevated rates of transport due to prior incubation of cells with insulin or vitamin K5 were completely resistant to inhibition by subsequent addition of N-ethylmaleimide or dithio(bis)nitrobenzoic acid. Deactivation of the hormone-stimulated transport system could be achieved by washing cells free of insulin or by destruction of insulin-receptor interaction by trypsin. N-Ethylmaleimide effectively blocked deactivation of insulin-stimulated transport system activity, while dithio(bis)nitrobenzoic acid was without effect. These results suggest that distinct cellular components mediate activation versus deactivation of the fat cell hexose transport system. N-Ethylmaleimide, which effectively penetrates fat cells, inhibits both processes while the layer, more polar dithio(bis)nitrobenzoic acid blocks activation but not deactivation of this transport system.  相似文献   

15.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

16.
Mono(indolyl)-4-trifluoromethylpyridines and bis(indolyl)-4-trifluoromethylpyridines were synthesized using Suzuki cross-coupling reaction between 2-chloro-4-trifluoromethylpyridine 9, 2,6-dichloro-4-trifluoromethylpyridine 6 or 2,6-dichloro-3-cyano-4-trifluoromethylpyridine 23 and N-tosyl-3-indolylboronic acid 10. They were evaluated for cytotoxic activity against P388 and A-549 cells with IC(50) values. 4-Trifluoromethyl-2,6-bis[3'-(N-tosyl-6'-methoxylindolyl)]pyridine 18 was identified as the most potent in this series.  相似文献   

17.
In the present work, a new bis heterocyclic compound comprising both the piperidone and thiohydantoin nuclei namely 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one was synthesised and characterised with the help of mp, elemental analysis, FT-IR, MS and one-dimensional NMR (1H and 13C) spectra. The inhibitory effect of 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one on 7,12-dimethylbenz[a]anthracene (DMBA) induced buccal pouch carcinogenesis was investigated in Syrian male hamsters. All the hamsters that were painted with DMBA on their buccal pouches for 14 weeks developed squamous cell carcinoma. Administration of 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one effectively suppressed the oral carcinogenesis initiated with the DMBA as revealed by a reduced incidence of neoplasms. Lipid peroxidation, glutathione (GSH) content and the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST) were used to biomonitor the chemopreventive potential of 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one. Lipid peroxidation was found to be significantly decreased, whereas GSH, GPx, GST and GGT were elevated in the oral mucosa of tumour bearing animals. Our data suggest that 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one may exert its chemopreventive effects in the oral mucosa by modulation of lipid peroxidation, antioxidants and detoxification systems.  相似文献   

18.
The metabolism of 1-14C-labeled long-chain alkylthioacetic acids (3-thia fatty acids) which are blocked for normal beta-oxidation by a sulfur atom in the beta-position has been investigated in vivo. Most of the injected radioactivity (greater than 50%) was excreted in the urine within the first 48 h. The recovered and identified metabolites were all short sulfoxydicarboxylic acids. The main metabolite from dodecylthioacetic acid was carboxypropylsulfoxy acetic acid. Some bis(carboxymethyl)sulfoxide (dithioglycolic acid sulfoxide) was also found. The main metabolite from nonylthioacetic acid was carboxyethylsulfoxyacetic acid. No sulfones were found. Less than 1% of the 1-14C from the dodecylthioacetic acid was recovered in respiratory CO2 and about 3% of the 1-14C from nonylthioacetic acid. [1-14C]Dodecyl-sulfonylacetic acid was recovered almost quantitatively as carboxypropylsulfonylacetic acid in the urine after 3 h. A significant fraction (10% of the dodecylthioacetic acid was recovered in the phospholipids and triacylglycerols from liver and epidymal fat pad 4 h after injection. These experiments show that the alkylthioacetic acids undergo an initial omega-oxidation followed by beta-oxidation to short dicarboxylic acids.  相似文献   

19.
S-Alkylcysteine alpha, beta-lyase [EC 4.4.1.6] of Pseudomonas putida catalyzes alpha,beta-elimination of L-djenkolate [3,3'-methylenedithiobis(2-aminopropionic acid)] to produce pyruvate, ammonia, and S-(mercaptomethyl)cysteine initially. Secondly, S-(mercaptomethyl)-cysteine, which was identified in the form of S-(mercaptomethyl)cysteine thiolactone and S-(2-thia-3-carboxypropyl)cysteine in the absence and presence of iodoacetic acid, respectively, is decomposed enzymatically to pyruvate, ammonia, and bis(mercapto)methane, or spontaneously to cysteine, formaldehyde, and hydrogen sulfide. Balance studies showed that 1.3 mol each of pyruvate and ammonia and 0.2 mol each of formaldehyde and cysteine were produced with consumption of 1 mol of L-djenkolate. 1,2,4,5-Tetrathiane, 1,2,4-trithiolane, 1,2,4,6-tetrathiepane, and 1,2,3,5,6-pentathiepane, which are derivatives of bis(mercapto)methane, were also produced during the alpha,beta-elimination of L-djenkolate. In addition, a polymer with the general formula of -(CH2S)n- was produced as a white precipitate. When the alpha,beta-elimination of L-djenkolate was carried out in the presence of 20 mM iodoacetic acid, neither formaldehyde, cysteine, hydrogen sulfide, or the polymer were formed. Instead, the S-carboxymethyl derivatives of bis(mercapto)methane and S-(mercaptomethyl)cysteine were produced in addition to pyruvate and ammonia.  相似文献   

20.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号