首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Methyl viologen-linked nitrite reductase (EC 1.7.7.1), an enzyme which catalyzes the 6-electron reduction of nitrite to ammonia, was isolated from bean roots. The isolated enzyme was homogeneous by disc electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 62,000 by SDS-polyacrylamide gel electrophoresis. In the oxidized form, the enzyme had absorption maxima at 280, 397 (Soret band), 535, and 573 nm (α band), indicating that siroheme is directly involved in the catalysis of nitrite reduction. The absorbance ratios, A397 : A280 and A573 : A397, were 0.3 and 0.39, respectively. Antiserum to spinach leaf nitrite reductase failed to give a positive Ouchterlony result with bean root nitrite reductase, but this antiserum did inhibit the activity of the latter enzyme.  相似文献   

2.
A ferredoxin-dependent nitrite reductase from Spinacea oleracea was purified approximately 180-fold, with a specific activity of 285 units/mg protein. This purified enzyme also had methyl viologen-dependent nitrite reductase activity, with a specific activity of 164 units/mg protein. After disc electrophoresis with polyacrylamide gel, the purified enzyme showed one major and one minor protein band.

The molecular weight of the enzyme was estimated to be 86,000 from Ultrogel filtration. This purified enzyme in oxidized form had absorption peaks at 278, 390, 573 and 690 nm. The absorbance ratios, A390: A278 and A673: A390 were 0.61 and 0.37, respectively.

By applying the purified enzyme to DEAE-Sephadex A–50 column chromatography, the ferredoxin-dependent nitrite reductase activity was selectively decreased. However, the methyl viologen-dependent nitrite reductase activity was increased, with a specific activity of 391 units/mg protein. This modified enzyme was homogeneous by disc electrophoresis with polyacrylamide gel.  相似文献   

3.
Ferredoxin-dependent nitrite reductase of spinach has been further characterized and the relationship between this enzyme and methyl viologen-dependent nitrite reductase studied.

Purified ferredoxin nitrite reductase, having a molecular weight of 86,000, showed 2.5 times higher ferredoxin-dependent activity than methyl viologen-linked activity. Besides 4 mol of labile sulfide the enzyme contained about 2 mol of siroheme per mol. When dithionite, methyl viologen and nitrite were added, ESR signals of a heme nitrosyl complex at g = 2.14, 2.07 and 2.02 were observed. Moreover, hyperfine splitting of the signal due to 14N nuclear spin was also observed at 2.033, 2.023 and 2.013. The sole addition of hydroxylamine to the ferric enzyme also caused the same but much less intense signals with the hyperfine splitting.

On treatment of the ferredoxin nitrite reductase (native enzyme) with DEAE-Sephadex A-50 chromatography, a modified nitrite reductase having a molecular weight of 61,000 and a protein fraction having an apparent molecular weight of 24,000 were separated. The modified enzyme contained about one mol of siroheme and 4 mol of labile sulfide per mol and showed essentially the same heme ESR signals as the native enzyme. Contrary to the native enzyme, this modified enzyme accepted electrons more efficiently from methyl viologen than ferredoxin and the reduction of nitrite to ammonia catalyzed by the modified enzyme was not stoichiometric. The observed nitrite to ammonia ratio was 1 to less than 0.6. Cyanide at concentrations between 0.02 to 0.2 mm inhibited the activity of the native enzyme almost completely but the modified enzyme was inhibited only partially.

From the results obtained, it is suggested that the native ferredoxin-linked nitrite reductase consists of two components (or subunits) and removal of the light component results in formation of a modified enzyme with increased relative affinity to methyl viologen.  相似文献   

4.
Ferredoxin-nitrite reductase (EC 1.7.7.1), an enzyme which catalyzes the 6-electron reduction of nitrite to ammonia, has been isolated from green shoots of bean (Phaseolus angularis). The isolated enzyme (GR-NiR), having a molecular mass of 68 000, showed 1.4 times higher ferredoxin-dependent activity than methyl viologen-linked activity. The enzyme was homogeneous by polyacrylamide gel electrophoresis (PAGE). In the oxidized form, the enzyme had absorption maxima at 275, 393 (Soret band), 535 and 571 (α band) nm, indicating that siroheme is involved in the catalysis of nitrite reduction. The absorbance ratios, A393 : A275 and A571 : A393 were 0.26 and 0.32, respectively. Antibody against the isolated enzyme was raised in rabbits. Analysis of the antiserum by immunodiffusion and immunoelectrophoresis suggested that it was a specific antiserum against GR-NiR. Using the antiserum, immunodiffusion and immunoprecipitation procedures were employed to compare the immunological similarity of NiR from green shoots, etiolated shoots and roots of bean. These tests revealed that the three forms of assimilatory NiR have antigenic determinants in common.  相似文献   

5.
Nitrite reductase (EC 1.6.6.4) has been purified 730-fold from spinach leaves. The enzyme catalyzes the reduction of nitrite to ammonia, with the use of reduced form of methyl viologen and ferredoxin. A stoichiometry of one molecule of nitrite reduced per molecule of ammonia formed has been found. KCN at 2.5×10-4 m inhibited nitrite reductase activity almost completely. Purified enzyme was almost homogeneous by disk electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 61,000 from gel filtration. Nitrite reductase, in the oxidized form, has absorption maxima at 276, 388 and 573 mμ. Both methyl viologen and ferredoxin linked nitrite reductase activities of the enzyme were inactivated on exposure to low ionic strength.  相似文献   

6.
Nitrite oxidoreductase was isolated from mixotrophically grown cells of Nitrobacter hamburgensis. The enzyme purified from heat treated membranes was homogeneous by the criteria of polyacrylamide gel electrophoresis and size exclusion chromatography. The monomeric form consisted of two subunits with Mr 115000 and 65000, respectively. The dimeric form of the enzyme contained 0.70 molybdenum, 23.0 iron, 1.76 zinc, and 0.89 copper. The catalytically active enzyme was investigated by visible and electron paramagnetic resonance spectroscopy (EPR) under oxidizing (as isolated), reducing (dithionite), and turnover (nitrite) conditions. As isolated the enzyme exhibited a complex set of EPR signals between 5–75 K, originating from several ironsulfur and molybdenum (V) centers. Addition of the substrate nitrite, or the reducing agent dithionite resulted in a set of new resonances. The molybdenum and the iron-sulfur centers of nitrite oxidoreductase from Nitrobacter hamburgensis were involved in the transformation of nitrite to nitrate.Abbreviations EPR electron paramagnetic resonance - ICP-AES inductively coupled plasma-atomic emission spectrometry - NaPi sodium phosphate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

7.
Ferredoxin-dependent sulfite reductase (Fd-SiR) (EC 1.8.7.1) was purified about 1136-fold, with a yield of 11%, from fresh thalli of Porphyra yezoensis by a procedure involving ammonium sulfate precipitation, DEAE-cellulose chromatography, Buty 1-Toyopearl chromatography, Sephadex G-100 gel filtration and ferredoxin-Sepharose affinity chromatography. The purified enzyme was apparently homogeneous, as judged on polyacrylamide disc gel electrophoresis, with a specific activity of 100 units/mg of protein. The molecular weight of the enzyme was estimated to be 70 kilodaltons by gel filtration. On subunit analysis by SDS-PAGE, a single band corresponding to molecular weight of 65 kilodaltons appeared. The purified enzyme (Fd-SiR) showed 5-times higher ferredoxin-dependent activity than methyl viologen-linked activity. In the oxidized form, the enzyme exhibited absorption maxima at 278, 390 (Soret band), 586 (a band) and 714 (CT band) nm, indicating that siroheme is involved in the catalysis of sulfite reduction. The absorbance ratios, A390: A218 and A586 :A390, were 0.32 and 0.31, respectively. A plot of the substrate (sulfite) and electron donor (ferredoxin) concentrations versus enzymatic (Fd-SiR) activity yielded sigmoidal curves, giving Hill coefficients («) of 2.3 (for sulfite) and 2.7 (for ferredoxin), respectively. Antibody against the isolated enzyme was raised in rabbits. Analysis of the antiserum by immunodiffusion suggested that it was specific against isolated Fd-SiR. Using the antiserum, dot immunoblotting was performed to determine the immunological similarity of Fd-SiRs from Porphyra yezoensis, Spirulina platensis, Brassica chinensis and Spinacia oleracea. The tests revealed that the four forms of assimilatory Fd-SiR have antigenic determinants in common.  相似文献   

8.
When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of Spirillum strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 mol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.Abbreviations DNRA dissimilatory nitrate reduction to ammonia - EPR electron paramagnetic resonance - PAGE polyacrylamide gel electrophoresis - NaPi sodium phosphate - SDS sodium dodecylsulfate  相似文献   

9.
Lactate dehydrogenase from yellow yam tuber (Dioscorea cayenensis Lam.) was isolated and purified using various chromatographic methods and electrophoresis. Only one form of the enzyme obtained, which obeyed Michaelis-Menten kinetics, was activated by Mg2+ and Ca2+ and inhibited by nucleotides and PEP. AMP, which activated the enzyme in the direction of pyruvate reduction, inhibited it in the direction of lactate oxidation. The enzyme is specific for pyruvate L-lactate and uses only NADH and NAD+ as the electron carriers. Polyacrylamide gel electrophoresis showed single band of lactate dehydrogenase activity. The average molecular mass obtained for the enzyme was 160 ± 1.2 kDa, while SDS gel electrophoresis indicated a dimer for the enzyme protein. The enzyme is very stable when frozen but its activity was hardly detectable when the tubers were stored in a well aerated place.  相似文献   

10.
Protocatechuate 3,4-dioxygenase was isolated from a gram-positive bacterium, Nocardia erythropolis, the enzyme participates in the phthalate ester metabolism in the bacterium. Cultural conditions for production of the enzyme, the purification procedure, and some properties of the enzyme were studied. A bouillon (beef) medium was the most effective among those tested for cell growth and enzyme formation. The effect was due to the ring closure type of creatine compounds. Protocatechuate 3,4-dioxygenase was purified from the cell-free extract ca. 1,400-fold and it gave a single band on polyacrylamide gel electrophoresis. The molecular weight was estimated to be ca. 150,000. The optimal pH and temperature were pH 8.0 and 40°C, respectively. The enzyme was stable in a pH range from 7.6 to 8.6 and below 42°C. The enzyme was inhibited by several metals such as Pb2+ , Cd2+ and Hg2+ . The enzyme was active on a wide range of o-dihydroxyphenyl compounds, in contrast to the high specificity of similar enzymes from gram-negative bacteria (Pseudomonas). The enzyme had a broad absorption band in the visible region with a peak around 450 nm, suggesting the presence of non-heme ion(s) bound to the enzyme as a cofactor. The spectrum changed markedly upon addition of the substrate, possibly showing the formation of an enzyme-substrate complex.  相似文献   

11.
The homogeneity of a purified ribonuclease from brewers' yeast was determined by velocity sedimentation and polyacrylamide gel electrophoresis techniques. The velocity sedimentation pattern gave a single peak with a Sapp 3.46 and polyacrylamide gel electrophoresis showed one major band. The absorption spectrum of the enzyme showed maximum absorption at 277–278 nm and minimum at 252 nm. The enzyme was relatively stable to extreme pH values and high temperature. Both NaCl and KCl increased the enzyme activity whereas enzyme was inhibited by divalent metal ions. The inhibition of the enzyme was increased in the order of Ca2+ > Mg2+ > Fe2+Cu2+. Chemical modification studies of the enzyme showed that tryptophan residues and disulfide bonds were required for enzyme activity.  相似文献   

12.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC high performance liquid chromatography - DEAE diethyl amino ethyl - IEF isoelectrofocusing - NTG nitrosoguanidine - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - pI isoelectric point  相似文献   

13.
An amine dehydrogenase was purified and crystallized from the cell free extract of a Pseudomonas sp., isolated from soil by means of the enrichment technique. The crystalline enzyme gave a single band on polyacrylamide gel electrophoresis and the molecular weight of the enzyme was estimated to be 100,000 by gel filtration on a Sephadex column. Upon SDS-gel electrophoresis, the enzyme was dissociated into two nonidentical subunits having molecular weights of 60,000 (dehydrogenase) and 39,000 (cytochrome c). The absorption spectrum of the enzyme showed absorption maxima at 550 nm, 524 nm, 411 nm and 280 nm, and a broad shoulder at around 350 nm, indicating that the enzyme was purified as a dehydrogenase-cytochrome c complex. The prosthetic group of the dehydrogenase was identified as covalently bound pyrroloquinoline quinone. The enzyme showed a broad substrate specificity toward various amines including aliphatic monoamines, aliphatic diamines, aromatic amines and polyamines.  相似文献   

14.
2-Ketogluconate reductase (2KGR) from the cell free extract of Gluconobacter liquefaciens (IFO 12388) was purified about 1000-fold by a procedure involving ammonium sulfate fractionation and column chromatographies using DEAE-cellulose, hydroxylapatite, and Sephadex gel The purified enzyme gave a single band on polyacrymamide gel electrophoresis. NADP was specifically required for the oxidation reaction of gluconic acid. Using gel filtration a molecular weight of about 110,000 was estimated for the enzyme. The pH optimum for the oxidation of gluconic acid (GA) to 2-ketogluconic acid (2KGA) by the enzyme was 10.5 and for the reduction of 2KGA was 6.5. The optimum temperature of the enzyme was 50 C for both reactions of oxidation and reduction. The enzyme was stable at pH between 5.0 and 11.0 and at temperature under 50°C, The enzyme activity was strongly inhibited with p-chloromercuribenzoate and mercury ions, but remarkably stimulated by manganese ions (1×10?3 m). Km value of the enzyme for GA was 1.3×10?2 m and for 2KGA was 6.6×10?3 m. Km values for NADP and NADPH2 were 1.25×10?5 and 1.52×10?5 m respectively.  相似文献   

15.
 Two extracellular isoenzymes of polygalacturonase, isolated from the brown-rot fungus Postia placenta, were purified 342-fold by Mono S cation-exchange chromatography. The temperature optimum ranged from 25 °C to 37 °C, and the pH optimum ranged from 3.2 to 3.9. Apparent pI values of the isoenzymes (3.2 and 3.4) were lower than any previously reported. The estimated molecular mass from a single band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis (PAGE) was 34 kDa. Isoenzymes of polygalacturonase in native PAGE and isoelectric focusing gels were identified by substrate/ agar overlays (zymograms). Comparison of viscosity reduction rates with release of reducing sugars indicated that the enzyme from P. placenta is endo-acting. The objective of this study was to isolate polygalacturonase from the brown-rot fungus P. placenta and characterize the properties of the enzyme. Received: 31 October 1995/Received revision: 12 February 1996/Accepted: 4 March 1996  相似文献   

16.
Wolinella succinogenes grown with nitrate as terminal electron acceptor contains two nitrite reductases as measured with the donor viologen radical, one in the cytoplasm and the other integrated in the cytoplasmic membrane. The fumarate-grown bacteria contain only the membraneous species.The isolated membraneous enzyme consists of a single polypeptide chain (M r 63,000) carrying 4 hemeC groups and probably an iron-sulphur cluster as prosthetic groups. The enzyme amounts to about 1% of the total membrane protein.The isolated enzyme catalyses the reduction of nitrite to ammonium without accumulation of significant amounts of intermediates or alternative products. The Michaelis constant for nitrite was 0.1 mM and the turnover number of the hemeC 1.5 · 105 electrons per min at 37°C.The viologen-reactive site of the enzyme in the membrane is oriented towards the cytoplasm. When the isolated enzyme is incorporated into liposomes, the viologen-as well as the nitrite-reactive site is exposed to thooutside.The cytoplasmic membrane contains a second hemeC protein (M r 22,000) which may represent a cytochrome c.Abbreviations NQNO 2-(n-nonyl)-4-hydroxyquinoline-N-oxide - MES 2-(N-morpholino)ethanesulfonate - MOPS 3-(N-morpholino)propanesulfonate - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - MK menaquinone  相似文献   

17.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

18.
Dissimilatory nitrite reductase was isolated from anaerobically nitrate-grown Vibrio fischeri cells and purified to electrophoretic homogeneity. The enzyme catalyzes the six-electron reduction of nitrite to ammonia. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under either nonreducing or reducing conditions, the purified nitrite reductase migrated as a single protein band of Mr 57,000. Gel filtration chromatography revealed a native molecular weight of 58,000, indicating the enzyme as isolated to be present in the monomeric form. Purified nitrite reductase exhibited typical c-type cytochrome absorption spectra with the reduced alpha-band at 552.5 nm. Heme content analysis using the purified preparation indicated the enzyme to contain 5.5 heme c groups per molecule. Iron analysis showed the presence of 5.62 g iron atoms per mole of enzyme and no nonheme irons were detected. These results clearly indicate that, similar to the dissimilatory nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes, and Escherichia coli, the V. fischeri nitrite reductase is a hexaheme c-type cytochrome. Amino acid composition of V. fischeri also revealed close similarities to those of the other three hexaheme nitrite reductases previously studied. Based on this information, it is concluded that the four ammonia-forming, dissimilatory nitrite reductases isolated to date represent a homologous group of proteins with the distinct property of being hexaheme c-type cytochromes.  相似文献   

19.
A maltotetraose-forming amylase from Pseudomonas stutzeri was highly purified by adsorption on starch granules and by chromatographies on Sephadex G-100 and DEAE-cellulose. The purified enzyme showed a single band in polyacrylamide gel electrophoreses with or without sodium dodecylsulfate. The optimum pH for enzyme action on starch was 6.0-6.5, and the optimum temperature was 45°C. The purified enzyme attacked starch from the non-reducing end to produce α-anomer oligosaccharides. This indicated that the enzyme was an exo-α-amylase which had not hitherto been found. The enzyme activity was markedly inhibited by the addition of Cu2+, Hg2+, N-bromosuccinimide and 2,3-butanedione. The molecular weight of the enzyme determined by the method of Weber and Osborn was about 5.7 × 104. The isoelectric point of the enzyme was estimated to be 5.3 by polyacrylamide gel electrofocusing. The Km and k0 values of this enzyme for starch, glycogen, short chain amylose and some maltooligosaccharides were calculated from Lineweaver-Burk plots.  相似文献   

20.
NAD+ reductase of the green photosynthetic bacterium Prosthecochloris aestuarii was isolated and purified by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. This enzyme is an FAD-containing flavoprotein and has absorption maxima at 485 (shoulder0 452, 411, and 385 nm (the 411 nm band is due to cytochrome). The molecular weight of the enzyme as determined by gel filtration using Sephadex G-200 is 119,000. The enzyme catalyzes the reduction of NAD+ and NADP+ by photoreduced spinach ferredoxin or reduced benzyl viologen...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号