首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To develop an efficient method for continuous production of L-malic acid from fumaric acid using immobilized microbial cells, screening of microorganisms having high fumarase activity was carried out and cultural conditions of selected microorganisms were investigated. As a result of screening microorganisms belonging to the genera Brevibacterium, Proteus, Pseudomonas, and Sarcina were found to produce fumarase in high levels. Among these microorganisms Brevibacterium ammoniagenes, B. flavum, Proteus vulgaris, and Pseudomonas fluorescens were further selected for their high fumarase levels in the cultivation on several media. These 4 microorganisms were entrapped into a k-carrageenan gel lattice, and the resultant immobilized B. flavum showed the highest fumarase activity and operational stability.Cultural conditions for the fumarase formation and the operational stability of fumarase activity of immobilized B. flavum are detailed. Productivity for L-malic acid using immobilized B. flavum with k-carrageenan was 2.3 fold of that using immobilized B. ammoniagenes with polyacrylamide.Presented at the Annual Meeting of the Agricultural Chemical Society of Japan, Nagoya, April 3, 1978  相似文献   

2.
Summary The direct conversion of d-xylose to ethanol was investigated using immobilized growing and non-growing cells of the yeast Pachysolen tannophilus. Both preparations produced ethanol from d-xylose, however the d-xylose conversion to ethanol was much better with immobilized growing cells. Ethanol concentration up to 22.9 g/l and ethanol yield of 0.351 g/g of d-xylose were obtained in batch fermentation by immobilized growing cells whereas only 17.0 g/l and 0.308 g/g of d-xylose were obtained by immobilized non-growing cells. With continuous systems, immobilized growing cells were necessary for the long-term operation, since a steady state ethanol concentration of 17.7 g/l was maintained for only one week by immobilized non-growing cell reactor. With simultaneous control of aeration rate and concentrations of nitrogen sources in feed medium, immobilized growing cells of P. tannophilus showed excellent performance. At a residence time of 25 h, the immobilized cell reactor produced 26.9 g/l of ethanol from 65 g/l of d-xylose in feed medium.  相似文献   

3.
Abstract

We have investigated the direct enantioselective amidation of mandelic acid with ammonia, catalyzed by a variety of commercial lipases including those from Candida rugosa, Mucor miehei, Pseudomonas sp., Rhizomucor miehei, and Thermomyces lanuginosus covalently immobilized onto Florisil® support via glutaraldehyde and polysuccinimide spacer arms. All the immobilized lipase preparations tested preferentially amidated the R isomer of mandelic acid. The highest amide yields were obtained for immobilized Pseudomonas sp. lipase preparations under the optimized reaction conditions. After 24 h of amidation, the reaction had proceeded with an excellent yield (50%) and enantiopurity (> 99%). The immobilized Pseudomonas sp. lipase preparations catalyzed the amidation reaction with the same yield and enantioselectivity. The enzyme immobilized via a glutaraldehyde spacer arm showed better reusability than that immobilized via a polysuccinimide spacer arm.

In view of these results, it is revealed that the direct amidation of mandelic acid catalyzed by the immobilized Pseudomonas sp. lipases is a facile and effective methodology for obtaining (S)-mandelic acid and (R)-mandelamide.  相似文献   

4.
Several microorganisms having higher L -histidine ammonia-lyase activity were immobilized into polyacrylamide gel lattice. The yield of enzyme activity by immobilization was highest in Achromobacter liquidum IAM 1667. As A. liquidum has urocanase activity, the cells were heat-treated at 70°C for 30 min to inactivate the urocanase. Enzymatic properties of the immobilized A. liquidum cells were investigated and compared with those of the intact cells. No difference was observed between the pH activity curve and optimal temperature for the intact and immobilized cells. The permeability of substrate or product through the cell wall was increased by immobilization of the cells. When an aqueous solution of 0.25M L -histidine (pH 9.0) containing 1mM Mg2+ was passed through a column packed with the immobilized A. liquidum cells at a flow rate of SV = 0.06 at 37°C, L -histidine was completely converted to urocanic acid. The L -histidine ammonia-lyase activity of the immobilized cell column was stable over 40 days at 37°C. From the effluent of the immobilized cell column, Urocanic acid was easily obtained in a good yield.  相似文献   

5.
Cells of the green algaSelenastrum capricornutum were immobilized in alginate beads. The alga was able to grow inside these beads without being grazed by zooplankton. For P-limited immobilized cells, however, a lower µ m and initial slope of the Monod growth curve µ m /K s were found than for free cells.To study the feasibility of immobilized algae to estimate algal growth potentialin situ in aquatic ecosystems, a series of experiments were conducted in indoor model ecosystems (microcosms) and in a small stream. The use of immobilized algae allowed a continuous registration of algal growth potential integrated over periods with natural fluctuations in the environment. The method of encapsulation of the algae can, however, still be improved. The alginate matrix is exposed to marked degradation by microorganisms when incubated in polluted streams for a period longer than two weeks. The applicability of other types of matrices should be tested.Author for correspondence  相似文献   

6.
This paper presents two immobilization methods for the intracellular invertase (INVA), from Zymomonas mobilis. In the first method, a chimeric protein containing the invertase INVA, fused through its C-terminus to CBD Cex from Cellulomonas fimi was expressed in Escherichia coli strain BL21 (DE3). INVA was purified and immobilized on crystalline cellulose (Avicel) by means of affinity, in a single step. No changes were detected in optimal pH and temperature when INVA-CBD was immobilized on Avicel, where values of 5.5 and 30 °C, respectively, were registered. The kinetic parameters of the INVA-CBD fusion protein were determined in both its free form and when immobilized on Avicel. K m and V max were affected with immobilization, since both showed an increase of up to threefold. Additionally, we found that subsequent to immobilization, the INVA-CBD fusion protein was 39% more susceptible to substrate inhibition than INVA-CBD in its free form. The second method of immobilization was achieved by the expression of a 6xHis-tagged invertase purified on Ni-NTA resin, which was then immobilized on Nylon-6 by covalent binding. An optimal pH of 5.5 and a temperature of 30 °C were maintained, subsequent to immobilization on Nylon-6 as well as with immobilization on crystalline cellulose. The kinetic parameters relating to V max increased up to 5.7-fold, following immobilization, whereas K m increased up to 1.7-fold. The two methods were compared showing that when invertase was immobilized on Nylon-6, its activity was 1.9 times that when immobilized on cellulose for substrate concentrations ranging from 30 to 390 mM of sucrose.  相似文献   

7.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

8.
Recovery of uranium by immobilized microorganisms   总被引:2,自引:0,他引:2  
Summary Some attempts were made to recover uranium from sea and fresh water using immobilized Streptomyces viridochromogenes and Chlorella regularis cells. The cells immobilized in polyacrylamide gel have the most favorable features for uranium recovery; high adsorption ability, good mechanical properties, and applicability in a column system. The adsorption of uranium by the immobilized cells is not affected by the pH values between 4 and 9. These results show that uranium adsorption becomes independent of pH after immobilization. The amounts of uranium adsorbed by the immobilized cells increased linearly with temperature, suggesting that the adsorption of uranium by the immobilized cells is an endothermic reaction. The immobilized cells can recover uranium almost quantitatively from both fresh and sea water containing uranium, and almost all uranium adsorbed is desorbed with a solution of Na2CO3. Thus the immobilized cells of Streptomyces and Chlorella can be used repeatedly in adsorption-desorption process.Studies on the Accumulation of Heavy Metal Elements in Biological Systems. XXI  相似文献   

9.
Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding. The resulting immobilized biocatalyst was recycled by seven assays, with a retained activity around 10% of its initial activity. Km and Vmax were respectively 228.3 M and 36.1 U mg of protein–1 for immobilized enzyme. Whereas the optimum temperature remained the same for both soluble and immobilized lipase (45 °C), there was a shift in pH profiles after immobilization. Optimum pH for the immobilized lipase was 8.0. Immobilized enzyme showed to be more resistant than soluble lipase when assays were performed out of the optimum temperature or pH.  相似文献   

10.
Zirconium phosphate (ZrP), a low-cost inorganic material with well-defined physicochemical properties, was successfully used as support for immobilizing Candida rugosa lipase by covalent bonding. The immobilized derivative showed high catalytic activity in both aqueous and non-aqueous media. Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy measurements demonstrated that the ZrP fulfilled the morphological requirements for use as a matrix for immobilizing lipases. The free and immobilized lipases were compared in terms of pH, temperature and thermal stability. The immobilized lipase had a higher pH optimum (7.5) and higher optimum temperature (50°C) than the free lipase. Immobilization also increased the thermal stability. The hydrolysis of p-nitrophenyl palmitate (pNPP) by immobilized lipase, examined at 37°C, followed Michaelis–Menten kinetics. Values for Km=1.18 µM and Vmax=325Umg?1 indicated that the immobilized system was subject to mass transfer limitations. The immobilized derivative was also tested under repetitive reaction batches in both ester hydrolysis and synthesis.  相似文献   

11.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

12.
Milk-clotting enzyme from Bacillus licheniformis 5A1 was immobilized on Amberlite IR-120 by ionic binding. Almost all the enzyme activity was retained on the support. The immobilized milk-clotting enzyme was repeatedly used to produce cheese in a batch reactor. The production of cheese was repeated 5 times with no loss of activity. The specific activity calculated on a bound-protein basis was slightly higher than that of free enzyme. The free and immobilized enzyme were highly tolerant to repeated freezing and thawing. The optimum temperature for milk-clotting activity was 70 °C with the free enzyme whereas, it was ranged from 70 to 80 °C with the immobilized milk-clotting enzyme. The activation energy (E A) of the immobilized milk-clotting enzyme was lower than the free enzyme (E A = 1.59 and 1.99 Kcal mol−1 respectively). The immobilized milk-clotting enzyme exhibited great thermal stability. The milk-clotting optimum pH was 7.0 for both free and immobilized enzyme. The Michaelis constant K m of the immobilized milk-clotting enzyme was slightly lower than the free enzyme.  相似文献   

13.
Summary Protoplasts of Brevibacterium flavum cultured in a medium containing 50 g·l-1 of biotin were prepared with lysozyme and immobilized in matrices of agar-acetylcellulose filters. The immobilized protoplasts were applied to l-glutamate production from glucose and urea in a batch system. The productivity of l-glutamate by the immobilized protoplasts was 2.5 times higher than that by immobilized whole cells under optimal conditions. Maximal productivity initially reached 1.5 mg·ml-1. The immobilized protoplasts of B. flavum could be used six times for l-glutamate production with retention of about 70% of the initial productivity.  相似文献   

14.
Summary Whole cells of Kluyvera citrophila were immobilized in polyacrylamide gel. The penicillin acylase activity of immobilized whole cells was 60%–70% of native cells. When the immobilized cells were continuously cultivated for 40 h in an aerated fermentor containing peptone medium and were treated with alkali in order to remove -lactamase activity, the immobilized cells produced ampicillin up to 4.4 times faster than noncultivated cells.Ampicillin production was investigated in a column system using these cultivated immobilized whole cells. The cultivated immobilized cells showed excellent performance in continuous ampicillin production.  相似文献   

15.
The reaction mechanism and decay behavior of aspartase activity for immobilized Escherichia coli cells were investigated by using a sectional packed column. Reaction within the immobilized cell column proceeded at zero-order on substrate solutions ranging in concentration from 0.1 to 1.0M, and the initial reaction rate was found to be 1.556 × 10?2 mol/min/liter of immobilized cells. The effect of temperature on the reaction rate constant was investigated. The Arrhenius plot was straight line at temperatures below 43°C, and the activation energy for immobilized cells was calculated to be 12.36 kcal/mol. Asparatase activity in the immobilized cell column decayed exponentially and uniformly in all sections of a column. Its half-life was approximately 120 days. The rate of formation of L-aspartic acid was shown to be independent of column dimensions.  相似文献   

16.
Aims: To immobilize Methylobacterium sp. NP3 and Acinetobacter sp. PK1 to silica and determine the ability of the immobilized bacteria to degrade high concentrations of phenol. Methods and Results: The phenol degradation activity of suspended and immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 bacteria was investigated in batch experiments with various concentrations of phenol. The bacterial cells were immobilized by attachment to or encapsulation in silica. The encapsulated bacteria had the highest phenol degradation rate, especially at initial phenol concentrations between 7500 and 10 000 mg l?1. Additionally, the immobilized cells could continuously degrade phenol for up to 55 days. Conclusions: The encapsulation of a mixed culture of Methylobacterium sp. NP3 and Acinetobacter sp. PK1 is an effective and easy technique that can be used to improve bacterial stability and phenol degradation. Significance and Impact of the Study: Wastewater from various industries contains high concentrations of phenol, which can cause wastewater treatment failure. Silica‐immobilized bacteria could be applied in bioreactors to initially remove the phenol, thereby preventing phenol shock loads to the wastewater treatment system.  相似文献   

17.
In this work, poly(acrylonitrile-co-acrylic acid) (PANCAA) was electrospun into nanofibers with a mean diameter of 180 nm. To create a biofriendly microenvironment for enzyme immobilization, collagen or protein hydrolysate from egg skin (ES) was respectively tethered on the prepared nanofibrous membranes in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiamine (EDC)/N-hydroxyl succinimide (NHS). Confocal laser scanning microscopy (CLSM) was used to verify the surface modification and protein density on the nanofibrous membranes. Lipase from Candida rugosa was then immobilized on the protein-modified nanofibrous membranes by covalent binding using glutaraldehyde (GA) as coupling agent, and on the nascent PANCAA nanofibrous membrane using EDC/NHS as coupling agent, respectively. The properties of the immobilized enzyme were assayed. It was found that different pre-tethered biomacromolecules had distinct effects on the immobilized enzyme. The activity retention of the immobilized lipase on ES hydrolysate-modified nanofibrous membrane increased from 15.0% to 20.4% compared with that on the nascent one, while it was enhanced up to more than quadrupled (activity retention of 61.7%) on the collagen-modified nanofibrous membrane. The kinetic parameter, Km and Vmax, were also determined for the free and immobilized lipases. Furthermore, the stabilities of the immobilized lipases were obviously improved compared with the free one.  相似文献   

18.
Aims: To test degradation of malic acid content in wine by immobilized Issatchenkia orientalis KMBL 5774 cells recently isolated from Korean wine pomace as a malic acid‐degrading yeast. Methods and Results: I. orientalis KMBL 5774 cells were immobilized using a mixture of oriental oak (Quercus variabilis) charcoal with sodium alginate. When the immobilized yeast cells were observed on a scanning electron microscope, cells were efficiently immobilized on the surface area of the charcoal. A Korean wine containing a high level of malic acid was treated with the immobilized yeast cells. The HPLC analysis of the malic acid content in the treated wine showed the malic acid content was reduced to 0·75 mg ml?1 after treatment from the original content of 8·96 mg ml?1, representing 91·6% of the malic acid was degraded during the treatment. Conclusions: The immobilization of the malic acid‐degrading yeasts with oriental oak charcoal and sodium alginate is useful for degradation of malic acid in wines containing a high level of malic acid with no significant increase in other acids. Significance and Impact of the study: Malic acid is sometimes detrimental to the quality of wines when present at high concentrations in some varieties. The immobilized I. orientalis KMBL5774 cells appear to be a promising candidate in view of developing biotechnological methods for reduction of malic acid contents in wine.  相似文献   

19.
This study investigated the growth rate of chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus and its potential application in the removal of nitrogen and phosphorus for wastewater treatment. Immobilized cell cultures had a lag phase of growth due to the immobilization method, and their growth rate was similar to that of free-living cell cultures. Ammonia removal was higher in free cells (54%) than in immobilized cells (29%), but nitrate removal was similar in immobilized (38%) and free cells (44%); phosphorus removal was more efficient in free cells (88%) than in immobilized cells (77%). Chlorophyll a and protein content were higher in immobilized cells. Our study demonstrates that S. elongatus immobilized into chitosan capsules can remove nutrients and is able to maintain a growth rate comparable to that of free cells in culture.  相似文献   

20.
Summary Xylanase from Scytalidium thermophilum was immobilized on Eudragit L-100, a pH sensitive copolymer of methacrylic acid and methyl methacrylate. The enzyme was non-covalently immobilized and the system expressed 70% xylanase activity. The immobilized preparation had broader optimum temperature of activity between 55 and 65 °C as compared to 65 °C in case of free enzyme and broader optimum pH between 6.0 and 7.0 as compared to 6.5 in case of free enzyme. Immobilization increased the t1/2 of enzyme at 60 °C from 15 to 30 min with a stabilization factor of 2. The Km and Vmax values for the immobilized and free xylanase were 0.5% xylan and 0.89 μmol/ml/min and 0.35% xylan and 1.01 μmol/ml/min respectively. An Arrhenius plot showed an increased value of activation energy for immobilized xylanase (227 kcal/mol) as compared to free xylanase (210 kcal/mol) confirming the higher temperature stability of the free enzyme. Enzymatic saccharification of xylan was also improved by xylanase immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号