首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
Bitter peptides were isolated from the tryptic hydrolysate of casein. Fractionation and isolation were carried out using n-butanol extraction, acidic precipitation at pH 5.4, gel filtration with Sephadex G-25, ion exchange chromatography with Dowex 50 W and paper chromatography. Three kinds of bitter peptides were purified. The primary structures of these peptides were proposed as follows; BP-I, Gly-Pro-Phe-Pro-Val-Ileu; BP-II, Phe-Phe-Val-Ala-Pro-Phe-Pro-Glu-Val-Phe-Gly-Lys; BP-III, Phe-Ala-Leu-Pro-Gln-Tyr-Leu-Lys. These peptides were very bitter in a 0.1% solution.

l-Tyrosine, l-phenylalanine and their derivatives were also tasted. The importance of the position of bitter amino acids in the peptide in the development and strengthening of its bitter taste is discussed.  相似文献   

2.
To estimate the steric distance between the bitter taste determinant sites in peptides, some cyclic dipeptides, amino acid anilides, amino acid cyclohexylamides, and benzoyl amino acids were synthesized and their tastes were evaluated. The diketopiperazine ring of cyclic dipeptides acted as a bitter taste determinant site due to its hydrophobicity. The steric distance between 2 sites was estimated as 4.1 Å from the molecule models of cyclic dipeptides composed of typical amino acids in the bitter peptides. Due to the hypothesis of two bitter taste determinant sites, which bind with the bitter taste receptor via a “binding unit” and a “stimulating unit,” a mechanism for the bitterness in peptides was postulated.  相似文献   

3.
The effect of l-arginine on transepithelial ion transport was examined in cultured M-1 mouse renal cortical collecting duct (CCD) cells using continuous short circuit current (I SC ) measurements in HCO3 /CO2 buffered solution. Steady state I SC averaged 73.8 ± 3.2 μA/cm2 (n= 126) and was reduced by 94 ± 0.6% (n= 16) by the apical addition of 100 μm amiloride. This confirms that the predominant electrogenic ion transport in M-1 cells is Na+ absorption via the epithelial sodium channel (ENaC). Experiments using the cationic amino acid l-lysine (radiolabeled) as a stable arginine analogue show that the combined activity of an apical system y+ and a basal amino acid transport system y+L are responsible for most cationic amino acid transport across M-1 cells. Together they generate net absorptive cationic amino acid flux. Application of l-arginine (10 mm) either apically or basolaterally induced a transient peak increase in I SC averaging 36.6 ± 5.4 μA/cm2 (n= 19) and 32.0 ± 7.2 μA/cm2 (n= 8), respectively. The response was preserved in the absence of bath Cl (n= 4), but was abolished either in the absence of apical Na+ (n= 4) or by apical addition of 100 μm amiloride (n= 6). l-lysine, which cannot serve as a precursor of NO, caused a response similar to that of l-arginine (n= 4); neither L-NMMA (100 μm; n= 3) nor L-NAME (1 mm; n= 4) (both NO-synthase inhibitors) affected the I SC response to l-arginine. The effects of arginine or lysine were replicated by alkalinization that mimicked the transient alkalinization of the bath solution upon addition of these amino acids. We conclude that in M-1 cells l-arginine stimulates Na+ absorption via a pH-dependent, but NO-independent mechanism. The observed net cationic amino acid absorption will counteract passive cationic amino acid leak into the CCD in the presence of electrogenic Na+ transport, consistent with reports of stimulated expression of Na+ and cationic amino acid transporters by aldosterone. Received: 11 September 2000/Revised: 6 December 2000  相似文献   

4.
Certain cultures of Streptococcus cremoris produced a bitter taste that occurred in the whey portion of milk cultures. Whey from a culture which produced bitterness was fractionated on Sephadex. The fraction in which the bitter taste was concentrated was chromatographed successively on paper with butanol-acetic acid-water (5:1:4), and then butanol-2-butanone-water (2:2:1). In each instance, the bitter component was in the most rapidly moving band that gave a positive ninhydrin test. The bitterness was observed to be caused by a peptide containing the following numbers of each amino acid: arginine, 1; glutamic acid, 2; glycine, 2; isoleucine, 2; leucine, 2; phenylalanine, 1; proline, 5; and valine, 4. N-terminal amino acids could be detected by coupling with 2,4-dinitrofluorobenzene or phenylisothiocyanate, or by hydrolysis with leucine aminopeptidase. When treated with carboxypeptidase, only leucine and valine appeared at the C-terminal end, and these were detected simultaneously.  相似文献   

5.
The bitter components of cheese are hydrophobic peptides which are produced during the process of enzymatic digestion, and some of the isolated bitter peptides are derived from the middle portion of β-casein. However, quantitative examination of the bitter taste is seldom performed. We synthesized two hydrophobic peptides, H-Pro61-Phe-Pro-Gly-Pro-Ile-Pro67-OH and H-Tyr60-Pro-Phe-Pro-Gly-Pro-Ile66-OH, which correspond to common portions among the isolated bitter peptides, in order to determine how bitter they were. From the results of sensory analysis, it was found that the synthetic peptides exhibited a bitter taste with threshold values 0.25 and 0.16mm, respectively. We also synthesized their fragments and analogs, and discussed the structure-bitterness relationship.  相似文献   

6.
In humans, the 25 bitter taste receptors (T2Rs) are activated by hundreds of structurally diverse bitter compounds. However, only five antagonists or bitter blockers are known. In this study, using molecular modeling guided site-directed mutagenesis, we elucidated the ligand-binding pocket of T2R4. We found seven amino acids located in the extracellular side of transmembrane 3 (TM3), TM4, extracellular loop 2 (ECL2), and ECL3 to be involved in T2R4 binding to its agonist quinine. ECL2 residues Asn-173 and Thr-174 are essential for quinine binding. Guided by a molecular model of T2R4, a number of amino acid derivatives were screened for their ability to bind to T2R4. These predictions were tested by calcium imaging assays that led to identification of γ-aminobutryic acid (GABA) and Nα,Nα-bis(carboxymethyl)-l-lysine (BCML) as competitive inhibitors of quinine-activated T2R4 with an IC50 of 3.2 ± 0.3 μm and 59 ± 18 nm, respectively. Interestingly, pharmacological characterization using a constitutively active mutant of T2R4 reveals that GABA acts as an antagonist, whereas BCML acts as an inverse agonist on T2R4. Site-directed mutagenesis confirms that the two novel bitter blockers share the same orthosteric site as the agonist quinine. The signature residues Ala-90 and Lys-270 play important roles in interacting with BCML and GABA, respectively. This is the first report to characterize a T2R endogenous antagonist and an inverse agonist. The novel bitter blockers will facilitate physiological studies focused on understanding the roles of T2Rs in extraoral tissues.  相似文献   

7.
Gustatory sensation of l- and d-amino acids in humans   总被引:1,自引:0,他引:1  
Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to d-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and l-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, l-serine had mainly sweet and minor umami taste, and d-serine was sweet. We further applied Stevens’ psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).  相似文献   

8.
Two novel peptides were purified from the venom of the scorpion Pandinus imperator, and were named Pi2 and Pi3. Their complete primary structures were determined and their blocking effects on Shaker B K+ channels were studied. Both peptides contain 35 amino acids residues, compacted by three disulfide bridges, and reversibly block the Shaker B K+ channels. They have only one amino acid changed in their sequence, at position 7 (a proline for a glutamic acid). Whereas peptide Pi2, containing the Pro7, binds the Shaker B K+ channels with a K d of 8.2 nm, peptide Pi3 containing the Glu7 residue has a much lower affinity of 140 nm. Both peptides are capable of displacing the binding of 125I-noxiustoxin to brain synaptosome membranes. Since these two novel peptides are about 50% identical to noxiustoxin, the present results support previous data published by our group showing that the amino-terminal region of noxiustoxin, and also the amino-terminal sequence of the newly purified homologues: Pi2, and Pi3, are important for the recognition of potassium channels. Received: 13 November 1995/Revised: 11 March 1996  相似文献   

9.
Various peptides and derivatives of peptides and amino acids were synthesized and tasted, systematically, to elucidate the relationship between bitterness and chemical structures of peptides.

We have found that: 1. Peptides become more bitter than the original amino acids when their amino and carboxyl groups are blocked and when peptide bond is formed. 2. A peptide molecule with a high content of amino acids with hydrophobic side chains will develop bitter taste. 3. The amino acids in a peptide chain independently contribute to bitterness regardless of amino acid sequences and configuration.  相似文献   

10.
The effect of casein hydrolysate, of mixtures of amino acids and of individual amino acids on the growth of 4 strains ofSphaerotilus discophorus was determined. Growth was virtually completely inhibited by 1.0% Bacto Casamino Acids, 0.54% simulated casein hydrolysate and 0.2% of a uniform mixture of 18 amino acids. The latter were prepared withl amino acids except thatdl-serine,dl-valine anddl-threonine were present in the uniform amino acid mixture.Experiments designed to test the toxicity of the 18 individual amino acids at 0.018 – 0.36% concentration indicated that arginine, glutamic acid, leucine, lysine and proline were non-toxic. However, aspartic acid and methionine were moderately toxic; growth was greatly repressed at a concentration of 0.36%. The remaining 11 amino acids which included alanine, cystine, glycine, tyrosine, histidine, isoleucine, phenylalanine, serine, threonine, tryptophane and valine were the most toxic of the group. They prevented growth partially or completely, at a concentration of 0.18% or 0.36%.dl-Serine anddl-valine were especially toxic and prevented growth at a concentration of 0.018%. The toxicity of the individuall-amino acids can account for the toxicity of Casamino Acids and simulated casein hydrolysate. l-Methionine or cyanocobalamin (vitamin B12) is required for the growth ofS. discophorus. Alsod- anddl-methionine can replace cyanocobalamin although they completely repress growth when used at the relatively high concentration of 200 µg per ml of medium.  相似文献   

11.
The primary structure of bovine β-casein contains the partial sequence of -Pro196-Val-Leu-Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val209 in the C-terminal portion. We previously reported that the synthetic C-terminal octapeptide, Arg202-Val209, is extremely bitter with its threshold value 0.004 mm, 250 times as strong as that of caffeine. To further investigate the bitter taste of the C-terminal portion of β-casein, we synthesized the C-terminal tetradecapeptide, Pro196-Val209, and some of its fragments. A hydrophobic hexapeptide, Pro196-Val201, was twice as bitter as caffeine. The bitter taste of the decapeptide, Pro200-Val209, was the same as that of Arg202-Val209. Although the tetradecapeptide, Pro196-Val209, was composed of two bitter peptides, Pro196-Val201 and Arg202-Val209, its bitter taste was weaker than that of Arg202-Val209 and its threshold value was 0.015 mm. We suggested that the increase of bitterness in peptides through the introduction of hydrophobic amino acids depended on the number of hydrophobic amino acids added. In addition, the synthetic retro analog of Arg202-Val209 (H-Val-Ile-Ile-Pro-Phe-Pro-Gly-Arg-OH) was not as bitter as Arg202-Val209. This indicated that the sequence of Arg202-Val209 is important for extreme bitterness.  相似文献   

12.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

13.
Characteristics of amino acid uptake in barley   总被引:2,自引:0,他引:2  
Plants have the ability to take up organic nitrogen (N) but this has not been thoroughly studied in agricultural plants. A critical question is whether agricultural plants can acquire amino acids in a soil ecosystem. The aim of this study was to characterize amino acid uptake capacity in barley (Hordeum vulgare L.) from a mixture of amino acids at concentrations relevant to field conditions. Amino acids in soil solution under barley were collected in microlysimeters. The recorded amino acid composition, 0–8.2 μM of l-Serine, l-Glutamic acid, Glycine, l-Arginine and l-Alanine, was then used as a template for uptake studies in hydroponically grown barley plants. Amino acid uptake during 2 h was studied at initial concentrations of 2–25 μM amino acids and recorded as amino acid disappearance from the incubation solution, analysed with HPLC. The uptake was verified in control experiments using several other techniques. Uptake of all five amino acids occurred at 2 μM and below. The concentration dependency of the uptake rate could be described by Michaelis–Menten kinetics. The affinity constant (K m) was in the range 19.6–33.2 μM. These K m values are comparable to reported values for soil micro-organisms.  相似文献   

14.
The purpose of this study was to identify the seleno-l-methionine (l-SeMet) α,γ-elimination enzyme that catalyzes l-SeMet to generate methylselenol (CH3SeH), a notable intermediate for the metabolism of selenium compounds, in mammalian tissues. The enzyme purified from ICR mouse liver was separated by one-dimensional gel electrophoresis, and the specific band was subjected to in-gel trypsin digestion followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometric analysis. In the peptide mass fingerprinting search, the mass numbers of 14 peptides produced by tryptic digestion of the enzyme were consistent with the theoretical mass numbers calculated from the amino acid sequence of murine cystathionine γ-lyase (E.C. 4.4.1.1). The peptide sequence tags search was also performed to obtain the amino acid sequence data of five tryptic peptides. These peptides were significantly identical to the partial amino acid sequences of cystathionine γ-lyase. This enzyme was clearly shown to catalyze the α, γ-elimination reaction of l-cystathionine by the enzymological research. The K m value for the catalysis of l-cystathionine was 0.81 mM and V max was. 0.0013 unit/mg protein. These results suggested that cystathionine γ-lyase catalyzes l-SeMet to generate CH3SeH by its α,γ-elimination reaction.  相似文献   

15.
Skin collagen decreases in protein-malnourished states. Amino acids regulate protein metabolism, glutamine stimulates collagen synthesis through the conversion process to proline and provides 75 % of the intracellular free proline in fibroblasts. However, the impact of these amino acids on collagen synthesis under malnutrition has not been examined. We investigated the effect of amino acids on dermal tropocollagen synthesis in protein-malnourished rats. The fractional synthesis rate (FSR, %/h) of dermal tropocollagen was evaluated by the incorporation of l-[ring-2H5]-phenylalanine after 4 h infusion of each amino acid and the stable isotope. None of the infused 12 single amino acids (glutamine, proline, alanine, arginine, glutamate, glycine, aspartate, serine, histidine, lysine, phenylalanine and threonine) significantly increased the FSR (P = 0.343, one-way ANOVA). In contrast, amino acid mixtures of essential amino acids + glutamine + arginine (EAARQ) and branched-chain amino acids + glutamine (BCAAQ) significantly increased the FSR compared to saline, but the branched-chain amino acids (BCAAs) and amino acid mixture of collagen protein (AAC) did not alter the FSR (saline, 0.96 ± 0.24 %/h; EAARQ, 1.76 ± 0.89 %/h; BCAAQ 1.71 ± 0.36 %/h; BCAAs, 1.08 ± 0.20 %/h and AAC 1.39 ± 0.35 %/h, P < 0.05, Tukey’s test). Proline conversion from glutamine represented only 3.9 % of the free proline in skin, as evaluated by the primed-constant infusion of l-d7-proline and l-α-15N-glutamine in rats. These results suggested that the combination of BCAAQ is a key factor for the enhancement of skin collagen synthesis in protein-malnourished rats. The contribution of extracellular free glutamine on de novo proline synthesis and collagen synthesis is very low in vivo compared to the contribution in vitro.  相似文献   

16.
The yeastRhodotorula glutinis was found to transport amino acids against a concentration gradient (100∶1 for 10−6 m l-lysine and 1500∶1 for 10−6 m α-aminoisobutyric acid). Anaerobically, the concentration gradients of free amino acids were occasionally higher than aerobically. The influx is saturable with an apparentK m of 1mm forl-lysine and 2mm for α-aminoisobutyric acid. The pH optimum for AIB uptake was 5.0, the apparent activation energy between 5° and 30° was 13,200 cal/mole. Competition of an asymmetric nature among various amino acids for uptake was observed. Intracellular amino acids did not leave the cell under any conditions of incubation, short of breaking up the plasma membrane, but they showed a powerful “trans” inhibitory effect on the uptake of amino acids.  相似文献   

17.
Aphids are highly specialized insects that feed on the phloem-sap of plants, the amino acid composition of which is very unbalanced. Amino acid metabolism is thus crucial in aphids, and we describe a novel investigation method based on the use of 14C-labeled amino acids added in an artificial diet. A metabolism cage for aphids was constructed, allowing for the collection and analysis of the radioactivity incorporated into the aphid body, expired as CO2, and rejected in the honeydew and exuviae. This method was applied to the study of the metabolism of eight energetic amino acids (aspartate, glutamate, glutamine, glycine, serine, alanine, proline, and threonine) in the pea aphid, Acyrthosiphon pisum. All these amino acids except threonine were subject to substantial catabolism as measured by high 14CO2 production. The highest turnover was displayed by aspartate, with 60% of its carbons expired as CO2. For the first time in an aphid, we directly demonstrated the synthesis of three essential amino acids (threonine, isoleucine, and lysine) from carbons of common amino acids. The synthesis of these three compounds was only observed from amino acids that were previously converted into glutamate. This conversion was important for aspartate, and lower for alanine and proline. To explain the quantitative results of interconversion between amino acids, we propose a compartmentation model with the intervention of bacterial endosymbiotes for the synthesis of essential amino acids and with glutamate as the only amino acid supplied by the insect to the symbiotes. Moreover, proline exhibited partial conversion into arginine, and it is suggested that proline is probably indirectly involved in excretory nitrogen metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Summary Rare mutations that alter the substrate specificity of proline permease cluster in discrete regions of theputP gene, suggesting that they may replace amino acids at the active site of the enzyme. IfputP substrate specificity mutations directly alter the active site of proline permease, the mutants should show specific defects in the kinetics of proline transport. In order to test this prediction, we examined the kinetics of threeputP substrate specificity mutants. One class of mutation increases theK m over 120-fold but only decreases theV max fourfold. SuchK m mutants may be specifically defective in substrate recognition, thus identifying an amino acid critical for substrate binding. Another class of mutation decreases theV max 80-fold without changing theK m .V max mutants appear to alter the rate of substrate translocation without affecting the substrate binding site. The last class of mutation alters both theK m andV max of proline transport. These results indicate that substrate specificity mutations alter amino acids critical for Na+/proline symport.  相似文献   

19.
It has been suggested that peptide inhibitors of prolyl endopeptidase (PEP) may act as anti-amnestic agents. In the hope of finding PEP inhibitors in milk proteins, we synthesized a total of 37 human β-casein peptide fragments containing proline residues. It was found that the peptides with PEP inhibition activity in vitro were located in the region of amino acid residues 49–59 of human β-casein. The most potent inhibitor was Ile-Tyr-Pro-Phe-Val-Glu-Pro-Ile (IC50 = 8 μm).  相似文献   

20.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号