首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An extracellular acid phosphatase from Ustilago esculenta was purified to homogeneity on the basis of polyacrylamide gel electrophoresis. It was a glycoprotein with an isoelectric point of 4.7. The molecular weight of the enzyme was estimated to be about 343,000 by gel filtration on Sephadex G-200, whereas on SDS-polyacrylamide gel electrophoresis, the enzyme gave a single protein band with a molecular weight of 116,000. This result suggests that the enzyme consists of three identical subunits. The enzyme showed an optimum activity at pH 4.5, retained 90% of its activity for 10 min at 55°C and had a Km value of 0.25 mm for p-nitrophenylphosphate. No definite substrate specificity of the enzyme was observed.  相似文献   

2.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase purified from baker’s yeast was found to have a molecular weight of ca, 55,000 daltons based on polyacrylamide gel electrophoresis. The size of the enzyme subunit was analyzed by gel electrophoresis in the presence of sodium dodecylsulfate. This showed that the enzyme was composed of two nonidentical subunits with a molecular weight of 27,000 and 25,000 daltons. Fluorescence titration of the apoenzyme with FMN suggested that the holoenzyme contained one mol of FMN per mol of the enzyme. The Km value of FMN for apoenzyme was calculated to be ca. 16 nm on both activities of pyridoxamine 5′-phosphate oxidase and pyridoxine 5′-phosphate oxidase.  相似文献   

3.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

4.
Intracellular frustosyl transferase was purified fromAureobasidium pullulans C-23 by ethanol fractionation, CM-Sephadex chromatography and preparative disc gel electrophoresis. It was shown to be homogeneous on disc polyacrylamide gel electrophoresis, with a molecular size of 190kDa. The pI value of the enzyme was about 3.7. The enzyme has aK m value of 0.43 mM for sucrose and was optimally active at pH 5.0 and 60°C. The enzyme was stable from pH 2.5 to 12. It was almost completely inhibited by 5mM Hg2+ but was not significantly affected by other cations. The transferase was inactivated by treatment with the tryptophan-specific reagentN-bromosuccinimide and the tyrosine-specific reagent, I2, suggesting that tryptophan and tyrosine residues are probably located at or near the active site of the enzyme.  相似文献   

5.
An isozyme of acid phosphatase-1, acid phosphatase-11, was purified from the leaves of tomato (Lycopersicon esculentum) to homogeneity and characterized. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis with or without sodium dodecyl sulfate. The gel filtration analysis showed that the native molecule had a relative molecular mass of about 61 kilodaltons (kDa). The relative molecular mass of the subunit on gel electrophoresis with sodium dodecyl sulfate was about 32 kDa, indicating that the native form of the enzyme was a homodimer. It was suggested by periodic acid-Schiff staining on the gel that the enzyme was a glycoprotein. The Km for p-nitrophenylphosphate was 2.9 × 10?3 m. The enzyme had a pH optimum of 4.5 in 0.15 m potassium acetate buffer with p-nitrophenylphosphate as a substrate. This enzyme was activated by divalent metal ions, such as Zn2+, Mg2+, and Mn2+. The N-terminal amino acids were sequenced after the purified enzyme was treated with pyroglutamylpeptidase. It was suggested that the N-terminal amino acid was pyroglutamate.  相似文献   

6.
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source. This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30. Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity. The optimal hydrolysis temperature for sucrose, raffinose and inulin was 55°C and the optimal pH for sucrose was 4.75. The apparent K m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively. Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides. The results obtained suggest the hypothesis that enzyme production was constitutive. Journal of Industrial Microbiology & Biotechnology (2000) 25, 63–69. Received 17 November 1999/ Accepted in revised form 30 May 2000  相似文献   

7.
The NAD-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.2) fromLaccaria bicolorwas purified 410-fold to apparent electrophoretic homogeneity with a 40% recovery through a three-step procedure involving ammonium sulfate precipitation, anion-exchange chromatography on DEAE–Trisacryl, and gel filtration. The molecular weight of the native enzyme determined by gel filtration was 470 kDa, whereas sodium dodecyl sulfate–polyacrylamide gel electrophoresis gave rise to a single band of 116 kDa, suggesting that the enzyme is composed of four identical subunits. The enzyme was specific for NAD(H). The pH optima were 7.4 and 8.8 for the amination and deamination reactions, respectively. The enzyme was found to be highly unstable, with virtually no activity after 20 days at −75°C, 4 days at 4°C, and 1 h at 50°C. The addition of ammonium sulfate improved greatly the stability of the enzyme and full activity was still observed after several months at −75°C. NAD-GDH activity was stimulated by Ca2+and Mg2+but strongly inhibited by Cu2+and slightly by the nucleotides AMP, ADP, and ATP. The Michaelis constants for NAD, NADH, 2-oxoglutarate, and ammonium were 282 μM, 89 μM, 1.35 mM, and 37 mM, respectively. The enzyme had a negative cooperativity for glutamate (Hill number of 0.3), and itsKmvalue increased from 0.24 to 3.6 mM when the glutamate concentration exceeded 1 mM. These affinity constants of the substrates, compared with those of the NADP-GDH of the fungus, suggest that the NAD-GDH is mainly involved in the catabolism of glutamate, while the NADP-GDH is involved in the catalysis of this amino acid.  相似文献   

8.
Isocitrate lyase was purified to homogeneity from ethanol-grown Euglena gracilis. The specific activity was 0.26 μmol/min/mg protein. The molecular mass of the enzyme was calculated to be 380 kDa by gel filtration on a Superose 6 column. The subunit molecular mass of the enzyme was 116 kDa as determined by SDS-polyacrylamide gel electrophoresis. These results showed that the native form of this enzyme was a trimer composed of three identical subunits. The pH optimum for cleavage and condensation reactions was 6.5 and 7.0, respectively. The Km values for isocitrate, glyoxylate and succinate were 3.8, 1.3 and 7.7 mM, respectively. Isocitrate lyase absolutely required Mg for enzymatic activity. This is the first report of the purification of isocitrate lyase to homogeneity from Euglena gracilis.  相似文献   

9.
Trigonelline (TRG), which act as a cell cycle regulator and a compatible solute in response to salinity and water-stress, is the N-methyl conjugate of nicotinic acid the formation of which is catalyzed by S-adenosyl-L-methionine nicotinic acid-N-methyltransferase. The enzyme was purified 2650-fold from soybean (Glycine max L.) leaves with a recovery of 4 %. The purification procedure included ammonium sulfate (45 – 60 %) precipitation, linear gradient DEAE-Sepharose chromatography, adenosine-agarose affinity chromatography, hydroxyapatite chromatography and gel filtration (Sephacryl-S-200). The purified enzyme preparation showed a major band with a molecular mass of 41.5 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is related to the enzyme activity. The native enzyme had a molecular mass of about 85 kDa as estimated by gel filtration. The Km values for S-adenosyl-L-methionine and nicotinic acid were 31 and 12.5 M, respectively. The purified enzyme showed optimum activity at pH 6.5 and temperature of 40 – 45 °C. High concentration of dithiothreitol (10 mM) and glycerol (20 %) stabilize the enzyme during purification and storage. Hg2+ strongly inhibits enzyme activity.  相似文献   

10.
α-1,4-Glucan phosphorylase (EC 2.4.1.1) from the red seaweed Gracilaria sordida (Harv.) W. Nelson was adsorbed onto starch-Sepharose 6B and Sephacryl S-300 under specified conditions. The algal enzyme was purified to homogeneity by these two steps. A molecular weight of 97.4 kDa was observed on SDS-polyacrylamide gel electrophoresis under reducing conditions, while the native molecular weight was 240 kDa asrevealed by 8-25% native gradient gel electrophoresis or 245 kDa by gel filtration. The pI of the enzyme was 5.4. It had a Km of 227, 264, 285, and 453 μg ml-1, respectively, towards glycogen, amylopectin, amylose, and maltodextrin. The enzyme activity was inhibited by cyclohexaamylose, ADP-glucose, and UDP-glucose. In contrast to other plant sources, cell-free extracts of G. sordida contained only one form of phosphorylase.  相似文献   

11.
Spinach chloroplasts display an ATPase activity which is associated with the envelope. This envelope-bound activity is stimulated by Ca2+, Mg2+ and calmodulin (Nguyen, T.D. and Siegenthaler, P.A. (1983) FEBS Lett. 164, 67–70). The Triton X-100-solubilized enzyme was retained specifically on a calmodulin-Sepharose affinity column in the presence of calcium. The fractions eluted by EGTA contained two proteins characterized by pI values of 7.3 and 6.0 (isoelectric focusing). Both proteins, separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-polyacrylamide gel electrophoresis), were resolved into a single polypeptide having and identical apparent Mrmr of 65 000. This suggests that the two initial proteins might be isoelectric variants. However, the amount of the enzyme fraction obtained by the calmodulin-Sepharose column was small and the ATPase activity was very labile. A linear glycerol gradient allowed the recovery of a greater amount of the enzyme which was, however, only partially purified, but the activity of which was much more stable. Electrophoresis of the ATPase-containing fractions in a native polyacrylamide gradient gel permitted the separation of a 260 kDa protein which was resolved by SDS-polyacrylamide gel electrophoresis into a single polypeptide of 65 kDa. Thus, the chloroplast envelope-bound ATPase might be a tetramer (260 kDa) consisting of 4 identical monomers (65 kDa). The purified ATPase had properties similar to that of the envelope-bound enzyme. TheKm value for ATP was 0.45 mM. The activity was stimulated by Ca2+ and Mg2+, and further enhanced by calmodulin. The physiological significance of the chloroplast envelope-bound ATPase is discussed.  相似文献   

12.
α-Glucan phosphorylase was extracted fromDioscorea rotundata tubers and purified 55 fold with specific activity of 360 nmol min-1 mg-1 protein and a yield of 41.5 %. By electrophoresis of purified enzyme on polyacrylamide gel a single band of phosphorylase activity appeared. The enzyme showed normal Michaelis-Menten kinetics and was activated by AMP. ATP, ADP, ADP-glucose, calcium and magnesium inhibited the enzyme. It is active in the presence and absence of primer. No effects were observed on the addition of glycolytic intermediates or amino acids. Using gel filtration molecular mass of the enzyme determined is 188 000 and the extract seems to contain one form. Properties of the enzyme indicate that phosphorylase from white yam tuber functions primarily as a starch degrading enzyme. The possible role of the enzyme during yam tuber storage is dicussed.  相似文献   

13.
The homogeneity of a purified ribonuclease from brewers' yeast was determined by velocity sedimentation and polyacrylamide gel electrophoresis techniques. The velocity sedimentation pattern gave a single peak with a Sapp 3.46 and polyacrylamide gel electrophoresis showed one major band. The absorption spectrum of the enzyme showed maximum absorption at 277–278 nm and minimum at 252 nm. The enzyme was relatively stable to extreme pH values and high temperature. Both NaCl and KCl increased the enzyme activity whereas enzyme was inhibited by divalent metal ions. The inhibition of the enzyme was increased in the order of Ca2+ > Mg2+ > Fe2+Cu2+. Chemical modification studies of the enzyme showed that tryptophan residues and disulfide bonds were required for enzyme activity.  相似文献   

14.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

15.
Thermostable acid phosphatase (APase) from thermoacidophilic archaeon Sulfolobus acidocaldarius was isolated, partially purified, and characterized. The optimum pH and temperature of the enzyme for p-nitrophenylphosphate (pNPP) as a substrate were 5.0 and 70°C, respectively. The apparent K m value was 1.9 mM. This APase showed a native molecular mass of 20 kDa on a gel filtration chromatography. Of the APase activity, 60% remained after 60 min of heat treatment at 75°C. To confirm whether the APase is active in the monomeric form, we attempted to elute the enzyme from SDS-polyacrylamide gels with Disk electrophoresis apparatus and renature the enzyme. The APase activity was recovered up to 50% in the 14- to 35-kDa range, and maximum around 25 kDa. These results suggest that this APase is monomeric protein. Received: 8 July 1999 / Accepted: 9 August 1999  相似文献   

16.
Semicarbazide-sensitive amine oxidase activity was detected in Narcissus tazetta. The enzyme was purified to homogeneity by the criterion of native polyacrylamide gel electrophoresis (PAGE) with DEAE-Sephacel, hydroxyapatite, and phenyl-Sepharose columns. The molecular mass of the enzyme, determined using a GS-520 HQ column, was estimated to be 135 kDa. SDS–PAGE yielded two bands of, 75 kDa and 65 kDa. The enzyme, which had catalytic activity for some aliphatic and aromatic monoamines, belongs to a class of monoamine oxidases (MAOs). The K m value for n-propylamine was 5.9 × 10?5 M. A substrate analog, 2-bromoethylamine, inhibited enzyme activity. Redox-cycling staining detected a quinone in the MAO protein. By inductively coupled plasma mass analysis, it was determined that there were 2.44 moles of copper atoms per mole of the enzyme. Protein sequence analysis revealed that there was no identity between two N-terminal residues of the 75 kDa and 65 kDa proteins of narcissus MAO.  相似文献   

17.
Polyphosphatase, an enzyme which hydrolyses highly polymeric polyphosphates to Pi, was purified 77-fold fromAcinetobacter johnsonii 210A by Q-Sepharose, hydroxylapatite and Mono-Q column chromatography. The native molecular mass estimated by gel filtration and native gel electrophoresis was 55 kDa. SDS-polyacrylamide gel electrophoresis indicated that polyphosphatase ofAcinetobacter johnsonii 210A is a monomer. The enzyme was specific for highly polymeric polyphosphates and showed no activity towards pyrophosphate and organic phosphate esters. The enzyme was inhibited by iodoacetamide and in the presence of 10 mM Mg2+ by pyro- and triphosphate. The apparent Km-value for polyphosphate with an average chain length of 64 residues was 5.9 µM and for tetraphosphate 1.2 mM. Polyphosphate chains were degraded to short chain polymers by a processive mechanism. Polyphosphatase activity was maximal in the presence of Mg2+ and K+.  相似文献   

18.
The restriction endonuclease AatII was purified from cell-free extracts of Acetobacter aceti IFO 3281 by streptomycin treatment, ammonium sulfate fractionation, combined column chromatographies on DEAE-Toyopearl 650S, heparin-Sepharose CL-6B and DEAE-Sepharose CL-6B and FPLC on Mono Q and on Superose 12 (gel filtration). The purified enzyme was homogeneous on SDS-polyacrylamide gel disk electrophoresis. The relative molecular mass of the purified enzyme was 190,000 daltons by gel filtration. The SDS-polyacrylamide gel disk electrophoresis gave the relative molecular mass of 47,500 daltons. These data indicated that the purified, native enzyme is a tetramer (190,000 daltons) composed of four 47,500-dalton subunits. The isoelectric point of the enzyme was 6.0. The purified enzyme was intensely activated by manganese ion (50-fold increase or more when compared with magnesium ion). The enzyme worked best at 37°C and pH 8.5 in a reaction mixture (50 μl) containing 1.0 μg λDNA, 10 mm Tris-HCl, 7 mm 2-mercaptoethanol, 7 mm MnCl2 and 50 mm NaCl. The enzyme recognizes the same palindromic hexanucleotide sequence 5′-GACGTC-3′, cuts between T and C and produces a 3′-tetranucleotide extension in the presence of MnCl2, as it does in the presence of MgCl2.  相似文献   

19.
Glucose-6-phosphate dehydrogenase in a yeast, Hansenula mrakii IFO 0895 is induced when the cells are cultured in a medium containing lipid hydroperoxide. The enzyme was purified from H. mrakii to the homogeneous state on polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was estimated to be approximately 52kDa by SDS-PAGE and 130 kDa by Sephadex G-150column chromatography, respectively. The enzyme was specific to glucose-6-phosphate and NADP+, and Kmvalues for glucose-6-phosphate and NADP+ were 293µM and 24.1 µM, respectively. The enzyme activity was inhibited by diethylpyrocarbonate and 2, 4, 6-trinitrobenzene sulfonate, and by metal ions such as Zn2 +, Cd2 +, Cu2 +, and Al3 + . tert-Butyl hydroperoxide, a kind of lipid hydroperoxide, slightly(approximately 20%) increased the enzyme activity.  相似文献   

20.
Polygalacturonase-3 was isolated and purified to homogeneity from palmyrah palm (Borassus flabellifer L.) fruit using Con A-Sepharose affinity column. The purified enzyme migrated as a single band on native and SDS–polyacrylamide gel electrophoresis. The molecular mass of the purified enzyme was estimated to be 66 kDa by size elution chromatography. Optimum polygalacturonase activity as a function of pH and temperature was determined using polygalacturonic acid as substrate. Optimum pH and temperature values ranged between the pH?4.0–5.0 and temperature 30–40 °C. At the optimum pH and temperature, the Km and Vmax values were determined by Lineweaver–Burk method. The value Km (0.33 mM) reveals that polygalacturonase has significant reactivity towards polygalacturonic acid. The enzyme showed varied responses towards divalent and monovalent metal ions. Ca2+ activated the polygalacturonase-3 enzyme protein. Both teepol and cetyltrimethylammonium bromide inhibited polygalacturonase-3 activity by 44 %, while 2-mercaptoethanol stimulated the enzyme marginally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号