首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of nuclease P1-malonogalactan complex (P1-MG) were compared with those of the polysaccharide-free nuclease P1. Significant difference was not observed between them in phosphomonoester splitting activity, but marked differences were observed in nucleolytic activity as follows: (1) The pH optima of P1-MG for RNA and heat-denatured DNA were lower than those of nuclease P1. (2) At lower than 0.001 of ionic strength, RNA and heat- denatured DNA were attacked hardly by P1-MG, but attacked well by nuclease P1. (3) The increase in hydrolysis rate of RNA or heat-denatured DNA with an elevation of temperature from 37°C to 70°C was not so marked in P1-MG as compared with nuclease P1. (4) P1-MG hydrolyzed polynucleotides, especially native DNA, much slower than nuclease P1.

Influence of ionic strength, pH and temperature on the nucleolytic activity of nuclease P1-galactan (P1-G), which was prepared by demalonylating P1-MG enzymatically, was similar to that of nuclease P1, except that the activity of P1-G for native DNA was much lower than nuclease P1.  相似文献   

2.
P1 type nuclease, which hydrolyzes RNA and heat-denatured DNA completely into 5’-mononucleotides and also shows 3’-nucleotidase activity, was widely distributed among various species belonging to the genus Penicillium such as P. expansum, P. notatum, P. steckii and P. meleagrinum. P1 type nucleases isolated from these strains were produced in a form of complex with malonogalactan when molds were grown on wheat bran. These enzymes showed similar characters in heat-stability (stable at 60°C), temperature optimum (60 to 70°C for RNA and heat denatured DNA, and 70°C for 3’-AMP) and sensitivity to EDTA. The enzymes from P. steckii and P. expansum were immunologically co-related to nuclease P1.

In addition, many strains of Penicillium produced base-nonspecific RNases forming 3’-mononucleotides via 2’: 3 ’-cyclic nucleotides. These RNases showed similarity in heat-lability (completely inactivated at 60°C), temperature optimum (45 to 50°C), sensitivity to Zn2+ and Cu2+, and relative hydrolysis rate toward 2’: 3’-cyclic nucleotides (A?C>U?G).  相似文献   

3.
Malonogalactan, a malonylated polysaccharide (—74° (c=1.6, H2O)) produced by Penicillium citrinum, consisted of d-galactose and malonic acid in the approximate molar ratio of 3:1. Molecular weight of the demalonylated galactan (-99° (c=4.6, H2O)) was about 40,000. From the data regarding optical rotation, nuclear magnetic resonance spectrum, infrared spectrum, glycosidase susceptibility, periodate oxidation, Smith degradation, methylation and acid hydrolysis, the possible structure of the Penicillium malonogalactan is deduced as follows: A galactan, 1,5-β-galactofuranoside polymer esterified with malonic acid at the position of 2 or 3.  相似文献   

4.
An intracellular nuclease inhibitor was 1270 times purified from a heat treated cell free extract of fresh mycelia of Aspergillus oryzae, by ammonium sulfate fractionation and chromatographies using DEAE-cellulose and Sephadex G-75. The purified sample of the inhibitor showed a UV absorption curve typical for protein, and it was inactivated by proteases such as chymotrypsin. The inhibitor stoichiometrically inactivated nuclease O (an intracellular nuclease of Asp. oryzae), forming an enzyme-inhibitor complex. But, it did not affect nuclease S1, RNase T1, RNase T2 or pancreatic RNase. The inhibitor was insensitive to 10?5m p-chloromercuribenzoate or 10?4m Pb2+. Molecular weights estimated by the method of Andrews were 23,000 for the inhibitor, 47,000 for nuclease O, and 82,000 for the enzyme-inhibitor complex. The nuclease activity was recovered from the inactive complex by the action of chymotrypsin.

Nuclease O of Asp. oryzae was purified and crystallized from 113.5 kg of wet mycelia and 2 kl of culture filtrate, by salting out with ammonium sulfate and by chromatographies on CM-Sephadex C-50 and Sephadex G-100. The purified nuclease showed a single peak with apparent sedimentation constant 2.9S in an ultracentrifuge. The molecular weight measured by short column method was 64,000. The nuclease was completely inhibited by the specific nuclease inhibitor obtained from Asp. oryzae. The nuclease was activated by 0.1 mm Mg2+ and Mn2+, and completely inhibited by 1 mm EDTA. Optimum pH for activity was 7.6 for RNA and 7.4 for DNA. The nuclease degraded polyadenylic acid, polyuridylic acid and polycytidylic acid without forming detectable amount of mononucleotides. And, the main product from RNA was oligonucleotides. The enzyme showed no nonspecific phosphodiesterase activity.  相似文献   

5.
Adenylyl (5′,2′)-adenosine 5′-phosphate ((2′-5′)pA-A) was detected in crude crystals of 5′-AMP prepared from Penicillium nuclease (nuclease P1) digest of a technical grade yeast RNA. While (3′–5′)A-A was split by nuclease P1, spleen phosphodiesterase, snake venom phosphodiesterase or alkali, (2′–5′)A-A was not split by a usual level of nuclease P1 or spleen phosphodiesterase. Nuclease P1 digests of 12 preparations of technical grade yeast RNA tested were confirmed to contain (2′–5′)pA-A. Its content was about 1 to 2% of the AMP component of each RNA preparation. As poly(A) was degraded completely by the Penicillium enzyme into 5′-AMP without formation of any appreciable amount of (2′–5′)pA-A, the technical grade RNA is supposed to contain 2–5′ phosphodiester linkages in addition to 3′–5′ major linkages.  相似文献   

6.
Summary At least four species of nucleases (nuclease N1, N2, N3 and N4) and one ribonuclease (ribonuclease N3) were detected in extract of wild type mycelia grown in high phosphate media by gel filtration of 0–65% ammonium sulfate precipitate through Sephadex G-100. Nuclease N4 eluted the first is a latent nuclease, the activity of which is not detectable within a week after preparation of the extract but a significant increase in nuclease activity was observed during additional one or two weeks by standing the fraction at 4°C. Nuclease N1 eluted the second is very labile and nuclease N2 eluted the third is stable at the temperature. Nuclease N3 eluted the last was activated within two or three weeks at 4°C. Although all the four nucleases were detected independent of the concentration of orthophosphate in culture media, significantly large amounts of latent ribonuclease (ribonuclease N3) and a number of nucleases including at least one latent nuclease were observed in wild type mycelia grown in low phosphate media. Ribonuclease N3 was determined to be a repressible enzyme. The activities of these constitutive latent nucleases, ribonuclease N3 and a number of nucleases specifically present in wild type mycelia grown in low phosphate media were not observed or significantly reduced in both nuc-1 and nuc-2 mutants, which were deficient to derepress at least eight orthophosphate repressible enzymes relating to phosphate metabolism. A revertant from nuc-2 restored the ability to show activation of at least one of the constitutive latent nucleases.  相似文献   

7.
Nuclease P1 was found to attack RNA and heat-denatured DNA in endo- and exonucleolytic manners. The evidence was as follows: (1) In the early stage of digestion both mononucleotides and oligonucleotides with various sizes were formed simultaneously with rapid fragmentation of polynucleotides. (2) The relative amount of the monomer was larger than that of any class of oligomers throughout the process of digestion. Nuclease P1 showed a preference for the linkages between 3′-hydroxyl group of adenosine or deoxyadenosine and the 5′-phosphoryl group of the adjacent nucleotides. p-Nitrophenyl ester of 3′-dTMP was hydrolyzed to thymidine and p-nitrophenyl phosphate, while p-nitrophenyl ester of 5′-dTMP was not attacked. It is concluded from these findings that the basic structure required for the substrate of nuclease P1 is a nucleoside 3′-phosphate-containing structure and the enzyme cleaves the diester bond between the phosphate and the 3′-hydroxyl group of the sugar.  相似文献   

8.
In this study, Bacillus sphaericus NRC 69 was grown in culture media, in which 12 agricultural wastes were tested as the main carbon, nitrogen and energy sources under solid state fermentation. Of the 12 tested agricultural by-products, wheat bran was the most efficient substrate for the production of B. sphaericus mosquitocidal toxins against larvae of Culex pipiens (LC50 1.2 ppm). Mixtures of tested agricultural wastes separately with wheat bran enhanced the produced toxicity several folds and decreased LC50 between 3.7- and 50-fold in comparison with that of agricultural wastes without mixing. The toxicity of B. sphaericus grown in wheat bran/rice hull at 8/2 (g/g) and wheat bran/barley straw at 1/4 (g/g) showed the same toxicity as that in wheat bran medium (LC50 decreased 17- and 16-fold, in comparison with that in rice hull or barely straw media, respectively). In wheat bran medium, the maximum toxicity of the tested organism obtained at 50% moisture content, inoculum size 84 × 106 CFU/g wheat bran and incubation for 6 days at 30°C. Addition of cheese whey permeate at 10% to wheat bran medium enhanced the toxicity of B. sphaericus NRC 69 about 46%.  相似文献   

9.
A mold strain Y244-2 capable of producing l-lysine α-oxidase, a new enzyme catalyzing the α-oxidative deamination of l-lysine, was identified as Trichoderma viride. Among strains belonging to the genus Trichoderma tested, only Trichoderma viride Y244-2 produced the enzyme in wheat bran culture. The maximum enzyme production by the mold grown on wheat bran was observed after 10 and 14 days incubation with and without NaN03, respectively. Addition of NaN03, NH4N03, adenine, purine nucleosides, l-histidine, glycine or l-glutamine to wheat bran stimulated the production of the enzyme. In the liquid culture, the enzyme was produced extracellulary under the aerobic conditions, although the production was much lower than that in the wheat bran culture.  相似文献   

10.
Nuclease S1, specifically splitting only single-stranded polynucleotides has been used to detect the double-stranded regions of high-molecular-weight AMV-RNA. Nuclease S1-resistant material comprising approx. 8% of 60S AMV-RNA molecule was isolated, purified and found to be completely nuclease S1-resistant when native and completely nuclease S1-sensitive upon heat denaturation. The symmetric nucleotide composition with equal G-C and equal A-U contents is also consistent with double-stranded nature of this material. Poly A does not participate significantly, if at all, in nuclease S1-resistant structures. It is suggested that those base paired regions might participate in linking the RNA subunits together to form an aggregate 60S RNA molecule of oncornaviruses.  相似文献   

11.
Salikhova  Z. Z.  Sokolova  R. B.  Yusupova  D. V. 《Microbiology》2000,69(6):659-662
The culture liquid and periplasm of Proteus mirabilis contained nuclease, an enzyme with DNase and RNase activities. The nuclease was most actively synthesized in the early exponential and stationary growth phases. Nuclease synthesis was regulated by nucleic acids (induction by substrate) and inorganic phosphate (end-product inhibition). The synthesis and secretion of nuclease by P. mirabilis was induced by mitomycin C, an inducer of the SOS functions of cells. This suggests the involvement of SOS-response proteins in the regulation of nuclease synthesis.  相似文献   

12.
Bacillus halodurans was cultivated on wheat bran as a solid-state substrate and produced haloduracin, a bacteriocin, at about 245 AU per wheat bran. Supplementation of the bran with Lauria-Bertani broth decreased haloduracin production. However, production was stimulated by addition of Mg2SO4 and K2HPO4. The highest production was achieved at a wheat bran/moisture ratio of 1:1.8 and in the presence of 10% (w/w) Na2CO3. Under optimum conditions, the organism produced about 3,000 AU per gram dry bran.  相似文献   

13.
Different methods were investigated for the rapid mass culture of Cistella japonica by using water extracts of some nutritional sources. In an agar culture test, there was little difference in mycelial growth in water extracts of wheat bran, rice bran and potato. In suspension culture with wheat bran extract, which is easily and cheaply available, the mycelium of C. japonica increased seven times more than that in agar culture after a month's incubation. C. japonica from suspension culture was pathogenic to Chamaecyparis obtusa. These results suggest that suspension culture in water extract of wheat bran can be adopted for the rapid mass culturing of C. japonica for use in inoculation tests.  相似文献   

14.
The O-polysaccharide fraction of the lipopolysaccharide from Klebsiella pneumoniae serotype O8 was found to comprise two galactose-containing homopolymers. Structural analysis, using chemical and high-field nuclear magnetic resonance (NMR) techniques, established that the K. pneumoniae O8 polysaccharides are composed of the linear, disaccharide repeating units OAc 1 2/6 →3)-β-d -Galf-(1 →3)-α- d -Galp-(1→d -Galactan I-OAc →3)-α-d -Galp-(1 →3)-β-d -Galp-(1→d -Galactan II. K. pneumoniae O8 mutant RFK-1 was isolated by resistance to phage KO1-2; strain RFK-1 expressed only d -galactan I-OAc. The 1H- and 13C-NMR resonances from this O-polysaccharide indicate that all of the O-acetyl groups within the K. pneumoniae O8 polysaccharide are carried on d -galactan I and O-acetylation occurs only on the β- d -galactofuranose residues; 60% of the available β- d -galactofuranose residues are non-acetylated. The O-acetylation of the remaining residues is equally distributed between the O-2 and O-6 positions. The carbohydrate backbone structures in the O8 polysaccharide are identical to d -galactan I and II expressed by K. pneumoniae O1, accounting for the antigenic cross-reaction between strains belonging to serotypes O1 and O8. However, the O1 polysaccharides are not acetylated and the O-acetyl groups present in the K. pneumoniae serotype O8 polysaccharides provide a structural basis for their recognition as distinct serotypes. The rfb (O-polysaccharide biosynthesis) gene cluster of K. pneumoniae serotype O1 determines the synthesis of d -galactan I. rfbKpo1-specific gene probes were used to examine conservation in the rfb gene clusters of other K. pneumoniae serotypes which produce d -galactan I. Six O1 strains were examined and all showed hybridization with rfbKpO1 probes under conditions of high stringency. Three serotype O2 strains produce d -galactan I and these strains also contained DNA sequences recognized by rfbKpO1 probes under high stringency. The physical maps of these homologous rfb chromosomal regions showed some polymorphism. Surprisingly, the rfbKpO8 region from K. pneumoniae serotype O8 was only recognized by rfbKpO1 probes under low-stringency hybridization conditions, providing evidence for two substantially different clonal groups of rfb genes from K. pneumoniae strains with structurally related O-antigens.  相似文献   

15.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   

16.
A recombinant chymosin was secreted at high levels using fusion genes with A. oryzae glucoamylase gene (glaA) and a wheat bran solid-state culture system. Two portions of the A. oryzae glucoamylase, one with almost the entire glucoamylase (GA1–603) lacking 9 amino acids at the carboxyl terminal, and the other (GA1–511) lacking the starch binding-domain, were fused in frame with prochymosin cDNA. Western blot analysis indicated that the mature chymosin was released from the secreted fusion protein by autocatalytic processing. The transformant harboring the GA1-511-prochymosin construct showed about 5-fold chymosin production of the transformant in which the chymosin gene was directly expressed under the control of the glaA promoter in submerged culture. Moreover, wheat bran solid-state culture gave about 500-fold higher yield of the chymosin (approximately 150 mg/kg wheat bran) compared with the submerged culture.  相似文献   

17.
Geshi N  Jørgensen B  Scheller HV  Ulvskov P 《Planta》2000,210(4):622-629
 The biosynthesis of galactan was investigated using microsomal membranes isolated from suspension-cultured cells of potato (Solanum tuberosum L. var. AZY). Incubation of the microsomal membranes in the presence of UDP-[14C]galactose resulted in a radioactive product insoluble in 70% methanol. The product released only [14C]galactose upon acid hydrolysis. Treatment of the product with Aspergillus niger endo-1,4-β-galactanase released 65–70% of the radioactivity to a 70%-methanol-soluble fraction. To a minor extent, [14C]galactose was also incorporated into proteins, however these galactoproteins were not a substrate for Aspergillus niger endo-1,4-β-galactanase. Thus, the majority of the 14C-labelled product was 1,4-β-galactan. Compounds released by the endo-1,4-β-galactanase treatment were mainly [14C]galactose and [14C]galactobiose, indicating that the synthesized 1,4-β-galactan was longer than a trimer. In vitro synthesis of 1,4-β-galactan was most active with 6-d-old cells, which are in the middle of the linear growth phase. The optimal synthesis occurred at pH 6.0 in the presence of 7.5 mM Mn2+. Aspergillus aculeatus rhamnogalacturonase A digested at least 50% of the labelled product to smaller fragments of approx. 14 kDa, suggesting that the synthesized [14C]galactan was attached to the endogenous rhamnogalacturonan I. When rhamnogalacturonase A digests of the labelled product were subsequently treated with endo-1,4-β-galactanase, radioactivity was not only found as [14C]galactose or [14C]galactobiose but also as larger fragments. The larger fragments were likely the [14C]galactose or [14C]galactobiose still attached to the rhamnogalacturonan backbone since treatment with β-galactosidase together with endo-1,4-β-galactanase digested all radioactivity to the fraction eluting as [14C]galactose. The data indicate that the majority of the [14C]galactan was attached directly to the rhamnose residues in rhamnogalacturonan I. Thus, isolated microsomal membranes contain enzyme activities to both initiate and elongate 1,4-β-galactan sidechains in the endogenous pectic rhamnogalacturonan I. Received: 24 June 1999 / Accepted: 30 August 1999  相似文献   

18.
Mutant strains of Aspergillus sojae exhibited coordinate increases of acid proteinase, α-amylase, and cellulase and a decrease of pectin trans-eliminase accompanied with the hyperproduction of alkaline proteinase in wheat bran koji culture. The production of these enzymes in the wheat bran solid medium, liquid wheat bran-defatted soybean medium, and liquid glucose-peptone medium were surveyed. The analyses on the production patterns of these enzymes under the different cultural conditions suggest that mutation in these mutants producing elevated levels of the above enzymes is due to a more complex alteration than a single gene mutation.  相似文献   

19.
An alkaline proteinase of Aspergillus Candidus was purified from wheat bran solid culture by batchwise treatment with Amberlite IRC–50 and sequential chromatography on DEAE-cellulose, hydroxylapatite and Sephadex G–100 gel. This purification results in a 18-fold increase of proteolytic activity and the enzyme preparation was homogeneous in sedimentation analysis of the ultracentrifuge and polyacrylamide gel disc electrophoresis. The molecular weight was estimated to be about 23,000 by gel glltration and 22,000 by calculation from the amino acid composition. The enzyme consisted of Lys14, His4, Arg3, Asp25, Thr15, Ser23, Glu15, Pro7, Gly22, Ala24, Met2, Val16, Ile11, Leu10, Tyr6, Phe7, Trp2 and amide ammonia14 and did not contain cysteine or cystine.  相似文献   

20.
A nuclease was purified about 1500-fold with a recovery of 20% from an aqueous extract of culture of a pigmentless mutant VI–10–14 of Penicillium citrinum on wheat bran. The purified preparation was homogeneous on the basis of the criteria of ultracentrifugation and disc gel electrophoresis. The preparation was essentially free of 5′-nucleotidase, non-specific phosphomonoesterase, non-specific phosphodiesterase and 3′-monoester forming nuclease. The preparation hydrolyzed phosphodiester bonds in RNA and DNA to yield 5′-mononucleotides, and also the phosphomonoester bond in 2′- and 3′-AMP to yield nucleoside and inorganic phosphate. The enzyme activities toward these substrates were not separated and relative ratio of their specific activities remained constant throughout the purification, suggesting that a single enzyme was responsible for these activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号