首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
—In the presence of synaptosomes prepared from rat brain, only ATP, dATP and ADP but not dADP were active as substrates of phosphatase (ATP phosphohydrolase; EC 3.6.1 4) in the presence of 150mm-Na+ and 20mm-K+. An active adenylate kinase (ATP:AMP phosphotransferase; EC 2.7.4.3.) was demonstrated in the synaptosomal fractions by means of paper chromatography, paper electrophoresis and enzymic reactions, so that the high activity with ADP as substrate could represent an activity of an ATPase. Apparently dADP was not a substrate for the kinase; no dATP was formed when dADP was incubated with the synaptosomal fraction in the presence of Na+, K+ and Mg2+. Small amounts of P1 were liberated with dADP, IDP, GDP or CDP, but not UDP, as substrates, but none was produced in the presence of mononucleotides. The adenine-deoxyribose bond, but not the adenine-ribose bond, was hydrolysed upon the addition of 5% (w/v) TCA to the reaction mixture. The KM for the hydrolysis of ATP but not ITP, in the presence of Mg2+, or of Na+, K+ and Mg2+, was lower for the synaptosomal ATPase than for the microsomal ATPase, and the values for Vmax for synaptosomal ATPase were higher. The activation increment was generally higher for the synaptosomal ATPase and no distinct differences in the properties of the enzyme from either particulate fractions were observed. Mg2+ could be partially replaced by Mn2+ in the synaptosomal ATPase system, but there was little Na+-K+-activation observed in the presence of the latter. The effects of ouabain and of homogenization under various conditions suggested localization of the K+-sensitive site of the ATPase on the surface of the synaptosomal membrane. Activity of the Na+-K+-Mg2+ ATPase increased after freezing and thawing of the sonicated, sucrose or tris-treated preparations but decreased considerably in the synaptosomes treated with 001 m-deoxycholate. Activity of the Mg2+ ATPase in the latter preparation showed little change.  相似文献   

2.
ATPases of cardiac cells are known to be among the most important enzymes to maintain the fluxes of vital cations by hydrolysis of the terminal high-energy phosphate of ATP. Biochemically the activities of Ca2+-pump ATPase, Ca2+/Mg2+-ecto ATPase, Na+,K+-ATPase and Mg2+-ATPase are determined in homogenates and isolated membranes as well as in myofibrillar and mitochondrial fractions of various purities. Such techniques permit estimation of enzyme activitiesin vitro under optimal conditions without precise enzyme topography. On the other hand, cytochemical methods demonstrate enzyme activityin situ, but not under optimal conditions. Until recently several cytochemical methods have been employed for each enzyme in order to protect its specific activity and precise localization but the results are difficult to interpret. To obtain more consistent data from biochemical and cytochemical point of view, we modified cytochemical methods in which unified conditions for each ATPase were used. The fixative solution (1% paraformaldehyde –0.2% glutaraldehyde in 0.1 M Tris Base buffer, pH 7.4), the same cationic concentrations of basic components in the incubation medium (0.1 M Tris Base, 2mM Pb(NO2)3, 5 mM MgSO4, 5 mM ATP) and selective stimulators or inhibitors were employed. The results reveal improved localization of Ca2+-pump ATPase, Na+–K+ ATPase and Ca2+/Mg2+-ecto ATPase in the cardiac membrane.  相似文献   

3.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

4.
Some aspects of theEscherichia coli Lon protease ATPase function were studied around the optimum pH value. It was revealed that in the absence of the protein substrate the maximum ATPase activity of the enzyme is observed at an equimolar ratio of ATP and Mg2+ ions in the area of their millimolar concentrations. Free components of the substrate complex (ATP-Mg)2− inhibit the enzyme ATPase activity. It is hypothesized that the effector activity of free Mg2+ ions is caused by the formation of the “ADP-Mg-form” of ATPase centers. It was shown that the activation of ATP hydrolysis in the presence of the protein substrate is accompanied by an increase in the affinity of the (ATP-Mg)2− complex to the enzyme, by an elimination of the inhibiting action of free Mg2+ ions without altering the efficiency of catalysis of ATP hydrolysis (based on thek cat value), and by a change in the type of inhibition of ATP hydrolysis by the (ADP-Mg) complex (without changing theK i value). Interaction of the Lon protease protein substrate with the enzyme area located outside the peptide hydrolase center was demonstrated by a direct experiment.  相似文献   

5.
1. The effect of gossypol in the presence of K+ or Mg2+, or both, was studied on ATPase activity and respiration of rat liver mitochondria.2. Respiration was uncoupled in the presence of gossypol, Mg2+, and K+, whereas in the presence of gossypol and Mg2+ a partial inhibition was observed.3. Gossypol stimulated ATPase activity in the presence of K+ or Mg2+, but maximal activity was observed when both cations were in the incubation medium.4. Stimulation of ATPase activity in the presence of Mg2+ was dose related.5. EDTA reverted the stimulation produced by gossypol on ATPase activity.6. Gossypol had no effect on the ATPase activity of submitochondrial particles, which suggests an indirect action of gossypol on the enzyme.7. Mitochondrial membrane potential showed a higher collapse in the presence of gossypol and 1mM MgCl2.8. The observed effects of gossypol could be explained by the collapse of the mitochondrial membrane potential.  相似文献   

6.
The properties of membrane-associated ATPase of cucumber (Cucumis sativus cv. Seiriki No. 2) roots cultured in a complete medium (complete enzyme) and in a medium lacking Ca2+ (Ca2+-deficient enzyme) were investigated. The basal activity of membrane-associated ATPase increased during Ca2+ starvation, while Mg2+-activation of the enzyme decreased and even resulted in inhibition by high Mg2+ concentration at the late stage of the Ca2+ starvation. The complete enzyme had low basal activity and showed a Mg2+-activated hyperbolic reaction curve in relation to ATP concentration. Ca2+-deficient enzyme with high basal activity showed a biphasic reaction curve and Mg2+-activation was seen only at high ATP concentrations. Activation of membrane-associated ATPase by various cations was decreased or lost during Ca2+ starvation. The basal ATPase activity of Ca2+-deficient enzyme increased for various substrates including pyrophosphate, p-nitrophenyl phosphate, glucose-6 phosphate, β-glycerophosphate, AMP, ADP and ATP. Mg2+-activation was found only for ADP and ATP in both the complete and Ca2+-deficient enzymes, but the activation for ATP was greatly reduced by Ca2+ starvation. The heat inactivation curves for basal and Mg2+-activated ATPase did not differ much between the complete and Ca2+-deficient enzyme. The delipidation of membrane-associated enzyme by acetone affected the protein content and the basal activity slightly, but inhibited the Mg2+-activated ATPase activity clearly with somewhat different behaviour between the complete and Ca2+-deficient enzyme.  相似文献   

7.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

8.
Membrane-bound ATPase (EC 3.6.1.4) of acidophilic heterotrophic bacteria from mine environment was isolated and characterized. The enzyme preparations fromAcidiphilium symbioticum KM2 and the strains GS18h and GS19h have a pH optimum of 7.7, 8.2 and 7.7, respectively, in the presence of Mg2+ which is required for activity. In an assay system containing Mn2+ or Ca2+ only, some activity was also evident. These enzymes hydrolyzed inorganic diphosphate (PPi), guanosine triphosphate (GTP) and inosine triphosphate (ITP) as the better substrate than ATP and theK m values of the enzymes with respect to ATP were determined to be 238, 157 and 228 μmol/L forA. symbioticum KM2 and the strains GS18h and GS19h, respectively. The activity was stimulated by sulfite while Zn2+, Hg2+, 4-chloromercuribenzoic acid (p-CMB) and the specific inhibitors of F0F1 type ATPase,viz. N,N′-dicyclohexylcarbodiimide (DCCD), oligomycin and azide reduced the activity of the enzyme preparations.  相似文献   

9.
Vacuoles were isolated from leaves of Kalanchoë daigremontiana Hamet et Perrier de la Bathie, and the ionic sensitivity of the vacuolar ATPase was studied in vacuole homogenates desalted on Sephadex G-25. The ATPase activity was dependent on the presence of divalent cations (Mg2+≥ Mn2+≥ Ca2+, Co2+; Zn2+ had no effect). Mg2+-dependent ATPase activity was stimulated by anions (Cl? > malate2+, HCO?3), with maximal stimulation at concentrations above 50 mM. Mg2+-Dependent activity was inhibited by NO?3 above 2 mM, but no saturation was observed up to 100 mM. No stimulation by K+ or Na+ was detected; stimulation by NH+4 was abolished by 0.01% (w/v) Triton X-100, suggesting that the NH+4 effect was due to the permeability of vacuolar membrane vesicles to NH3. Trans-tonoplast electrical potentials (Δψ) and intra-vacuolar pH were measured with glass microelectrodes and antimony covered glass micro-pH-electrodes, respectively. Free vacuofes isolated from Kalanchoë tubiflora (Harv.) Hamet were slightly positive with respect to the suspension medium. This Δψ was insensitive to the protonophore FCCP and depolarized by about 4 mV on addition of 50 mM KCl, still remaining about +5 mV. Upon addition of 7 mM Mg-ATP, vacuoles showed an FCCP-sensitive increase of Δψ from +9.2 ± 2.8 (13) to +17.8 ± 3.7 (12) mV [given as x?± sd (n)] and an internal acidification from pH 5.4 ± 0.2 (11) to pH 4.3 ± 0.4 (12). Mg-ADP and ATP without Mg2+ had no effect on Δψ. It is concluded that the H4 pumping at the tonoplast is due to the functioning of the anion-sensitive vacuolar ATPase and that this is an essential part of the mechanism of nocturnal acid accumulation in CAM.  相似文献   

10.
Amyloplast envelope membranes isolated from cultured, white-wild cells of sycamore (Acer pseudoplatanus L.) have been found to contain a Mg2+-ATPase, ranging in specific activity from 5 to 30 nanomoles per minute per milligram protein. This ATPase hydrolyzes a broad range of nucleoside triphosphates, whereas it hydrolyzes nucleoside mono- and diphosphates poorly, if at all. The ATPase activity was stimulated by several divalent cations, including Mg2+, Mn2+ and Ca2+, whereas it was not affected by Sr2+, K+, or Na+. The Km for total ATP was 0.6 millimolar, and the activity showed a broad pH optimum between 7.5 and 8.0. The ATPase was insensitive to N,N′-dicyclohexylcarbodiimide and oligomycin, but it was inhibited by vanadate. All these characteristics are basically similar to those reported previously for the Mg2+-ATPase of the chloroplast inner-envelope membrane. Likewise, the amyloplast envelope enzyme was shown to be located specifically on the inner envelope membrane. The amyloplast envelope membranes were chemically modified with a series of unique affinity labeling reagents, the adenosine polyphosphopyridoxals (M Tagaya, T Fukui 1986 Biochemistry 25: 2958-2964). About 90% of the ATPase activity was lost when the envelope membranes were preincubated with 0.1 millimolar adenosine triphosphopyridoxal. Notably, the enzyme was protected completely from inactivation in the presence of its substrate, ATP. In contrast, both adenosine diphosphopyridoxal and pyridoxal phosphate caused much less of an inhibitory effect. This greater relative reactivity of the triphosphopyridoxal analog is similar to that reported previously with Escherichia coli F1 ATPase (T Noumi et al. 1987 J Biol Chem 262: 7686-7692).  相似文献   

11.
Microsomal fractions from wheat tissues exhibit a higher level of ATP hydrolytic activity in the presence of Ca2+ than Mg2+. Here we characterise the Ca2+-dependent activity from roots of Triticum aestivum lev. Troy) and investigate its possible function. Ca2+-dependent ATP hydrolysis in the microsomal fraction occurs over a wide pH range with two slight optima at pH 5.5 and 7.5. At these pHs the activity co-migrates with the major peak of nitrate-inhibited Mg2+. Cl-ATPase on continuous sucrose gradients indicating that it is associated with the vacuolar membrane. Ca2+-dependent ATP hydrolysis can be distinguished from an inhibitory effect of Ca2+ on the plasma membrane K+, Mg2+-ATPase following microsomal membrane separation using aqueous polymer two phase partitioning. The Ca2+-dependent activity is stimulated by free Ca2+ with a Km of 8.1 μM in the absence of Mg2+ ([CaATP] = 0.8 mM). Vacuoiar membrane vacuolar preparations contain a higher Ca2+-dependent than Mg2+-dependent ATP hydrolysis, although the two activities are not directly additive. The nucleotide specificity of the divalent ion-dependent activities in vacuolar membrane-enriched fractions was low. hydrolysis of CTP and UTP being greater than ATP hydrolysis with both Ca2+ and Mg2+ The Ca2+-dependent activity did discriminate against dinucleotides, and mononucleotides. and failed to hydrolyse phosphatase substrates. Despite low nucleotide specificity the Mg2+-dependent activity functioned as a bafilomycin sensitive H+-pump in vacuolar membrane vesicles. Ca2+-dependent ATP hydrolysis was not inhibited by the V-, P-, or F-type ATPase inhibitors bafilomycin. vanadate and azide, respectively. nor by the phosphatase inhibitor molybdate, but was inhibited 20% at pH 7.5 by K+. Possible functions of Ca2+-dependent hydrolysis as a H+-pump or a Ca2+-pump was investigated using vacuolar membrane vesicles. No H+ or Ca2+ translocating activity was observed under conditions when the Ca2+-dependent ATP hydrolysis was active.  相似文献   

12.
Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo.  相似文献   

13.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

14.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

15.
Summary Lysosomes isolated from rat liver were found to have ATPase activity (EC No. 3.6.1.3). Subfractionation of the lysosomes revealed a membranous localization of ATPase activity. The enzyme has half maximal activity at 0.2mm ATP and is inhibited by high concentrations of ATP. The apparentK m for divalent metal is 0.2mm, and either ca2+ or Mg2+ give maximal activity.The ATPase activity has latency when lysosomes are isolated from rats treated with Triton WR-1339. This latency may be due to the presence of internalized sucrose because the activity ofL fraction lysosomes is much less latent and Triton WR-1339 itself is not inhibitory. The latency of glucosamindase, a marker enzyme for lysosomes, contrasts with the low latency of the ATPase and points to an ATPase with an exposed active site in intact lysosomes.  相似文献   

16.
Aurovertin forms a complex with soluble beef heart mitochondrial ATPase (F1) while exhibiting a biphasic fluorence enhancement. The effect of substrate, activators and inhibitors of F11 of the fluorescence of the aurovertin-F1 complex is reported. The aurovertin-F1 complex can exist in two different states, one showing low fluorescence and the other with high fluorescence. Transition into the low fluorescence state is induced by various nucleoside triphosphates (ATP ± Mg2+, ITP ± Mg2+, GIP + Gg2+, and AMP-P(NH)P ± Mg2+). The rate and extent of fluorescence decrease caused by nucleotide addition (except that caused by ATP) is dependent on the presence of added Mg2+. The inhibitors of ATPase activity (AMP-P(NH)P, GMP-P(NH)P and EDTA) at concentrations that inhibit hydrolysis of ATP did not prevent the ATP induced decrease of aurovertin fluorescence. EDTA at high concentration (>0.4 mM) enhanced the effect of ADP.The complex of aurovertin with F1 that had previously been treated with butanedione loses sensitivity to ATP. Addition of ADP to the system containing butanedione-treated enzyme caused a 2-fold greater enhancement of fluorescence than the addition of ADP to the control system. In contrast to the butanedione-treated enzyme, the complex of aurovertin with F1 previously treated at pH 5.6 loses sensitivity to ADP. Addition of ATP to this system lowered the fluorescence as in the system containing native enzyme.On the basis of the analyses of the aurovertin fluorescence changes and hydrolytic activity of F1, the existence of several types of ligand binding sties with varying degrees of specificity are proposed. It is further proposed that these sites are important in control of the conformation and the catalytic properties of the ATPase molecule.  相似文献   

17.
A fluorescent ATP analog, β-naphthyl triphosphate, was hydrolyzed to β-naphthyl diphosphate and orthophosphate by heavy meromyosin ATPase. In the process of hydrolysis the fluorescence intensity of β-naphthyl triphosphate changed remarkably. Thus, the rate of β-naphthyl triphosphate hydrolysis is evaluated directly and continuously by measuring the time course of fluorescence intensity.In the presence of Ca2+, the Michaelis constant (Km) of β-naphthyl triphosphate hydrolysis by heavy meromyosin was similar to that of ATP hydrolysis. While, in the presence of Mg2+ the Km of β-napthyl triphosphate hydrolysis was 9.0·10−6 M, much larger than the value of ATP hydrolysis, indicating that the apparent affinity of the enzyme for β-naphthyl triphosphate is less than that for ATP.The pH dependence of β-naphthyl triphosphatase activity resembled that of ATPase activity, suggesting a similarity in the mechanism of hydrolysis of the two substrates.  相似文献   

18.
Summary The ultrastructural localization of Ca2+, Mg2+-activated ATPase was studied in phytohaemagglutinin activated lymphocytes and in normal unstimulated lymphocytes. Cells, fixed in paraformaldehyde-glutaraldehyde, were incubated in a medium containing 3mm ATP, 5mm CaCl2 and 2.4mm Pb(NO3)2 in 0.1m tris buffer at pH 8.5, the optimum pH for histochemical demonstration of this enzyme. Reaction product was localized i the endoplasmic reticulum, nuclear membrane, Golgi apparatus and mitochondria and on the membrane surrounding large electron-dense bodies. Cytoplasmic vesicles and the plasma membrane were negative. Activity in unstimulated lymphocytes showed a similar localization but the amount of endoplasmic reticulum was much less than in activated lymphocytes.The pH of the medium was critical for the localization of the enzyme. At pH 7.5, the cytoplasmic reaction was almost completely inhibited but a dense precipitate was present on the outer surface of the plasma membrane. The reaction was stimulated by either Ca2+ or Mg2+ and was greatly decreased in the absence of these cations or in the presence ofp-chloromercuribenzoate orN-ethylmaleimide. Oligomycin inhibited selectively the reaction in mitochondria but not the reaction at other sites. While the reaction in mitochondria showed complete substrate specificity, a mild reaction was obtained at the other sites with uridine diphosphate or sodium -glycophosphate as substrate. ATP was, however, the preferential substate.  相似文献   

19.
T Matsuda  S Maeda  A Baba  H Iwata 《Life sciences》1977,21(7):915-920
Cysteine stimulated the activity of the ATPase dependent on Ca2+, but not Mg2+ and Zn2+, in the microsomal and brush border fractions of rat duodenal mucosa. This ATPase was localized in the duodenum but was not present in the jejunum of ileum. Kinetic studies showed that cysteine did not change the Km value for ATP but decreased that for Ca2+. Other sulfhydryl-containing reagents, such as glutathione, 2-mercaptoethanol and dithiothreitol, also stimulated the Ca2+-ATPase activity. These findings suggest that thiol-containing reagents stimulate the Ca2+-ATPase activity in the duodenum by affecting the interaction of the enzyme with Ca2+.  相似文献   

20.
A plasma membrane-rich microsome fraction isolated from barley (Hordeum vulgare L. cv. Conquest) roots contained considerable divalent cation-dependent ATPase activity when assayed at 16°C. The maximal divalent cation-stimulation of the apparent basal ATPase activity varied as Ca2+ > Mg2+ > Mn2+= Zn2+ > Co2+ > Ni2+, with all other divalent cations tested being inhibitory. Double reciprocal plots of the Ca2+- and Mg2+-dependent ATPase velocities as a function of substance concentration were nonlinear, suggesting the presence of multiple catalytic sites. Both MgATP2- and CaATP2- served as the true substrates and apparently bind to the same catalytic sites. Free ATP and Ca2+ could inhibitit the Ca2+- and Mg2+-dependent ATPase. Increasing free Mg2+ levels enhanced the affinity of the Mg2+-dependent ATPase for MgATP2-, while slightly inhibiting the Vmax values. Other divalent cation-nucleoside triphosphate complexes produced maximal enzyme velocities equal to or greater than those generated by CaATP2- and MgATP2-. However, the ATPase had significantly higher affinities for CaATP2- and MgATP2-, than for the alternative substrates. The high and low affinity components of the Ca2+- and Mg2+-dependent ATPase exhibited optimal Vmax values at pH 5 and 6, respectively. Analysis of the pH-dependence of the enzyme Km values indicated enzyme-substrate binding with charge neutralization at neutral and alkaline pH's. Nonlinear double reciprocal plots were obtained at all assay temperatures. However, the complexity of the enzyme kinetics became less apparent at the higher assay temperatures. The kinetics of the barley root divalent cation-dependent ATPase activities are discussed in terms of the kinetics of ATPases from other plants and the methods used to obtain them, and compared to the kinetics of ion transport ATPases from animal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号