首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
2.
3.
To identify molecules that play roles in the clearance of apoptotic cells by Drosophila phagocytes, we examined a series of monoclonal antibodies raised against larval hemocytes for effects on phagocytosis in vitro. One antibody that inhibited phagocytosis recognized terribly reduced optic lobes (Trol), a core protein of the perlecan-type proteoglycan, and the level of phagocytosis in embryos of a Trol-lacking fly line was lower than in a control line. The treatment of a hemocyte cell line with a recombinant Trol protein containing the amino acid sequence RGD augmented the phosphorylation of focal adhesion kinase, a hallmark of integrin activation. A loss of integrin βν, one of the two β subunits of Drosophila integrin, brought about a reduction in the level of apoptotic cell clearance in embryos. The presence of integrin βν at the surface of embryonic hemocytes was confirmed, and forced expression of integrin βν in hemocytes of an integrin βν-lacking fly line recovered the defective phenotype of phagocytosis. Finally, the level of phagocytosis in a fly line that lacks both integrin βν and Draper, another receptor required for the phagocytosis of apoptotic cells, was lower than that in a fly line lacking either protein. We suggest that integrin βν serves as a phagocytosis receptor responsible for the clearance of apoptotic cells in Drosophila, independent of Draper.  相似文献   

4.
In neutrophils, two receptors for IgG antibodies, namely FcγRIIA and FcγRIIIB are constitutively expressed, and a third one, FcγRI, can be upregulated by interferon-γ. Whether FcγRIIIB is capable of triggering phagocytosis by itself is still controversial. The main role of FcγRI has not been clearly established in these cells. To address this problem, neutrophils were treated with interferon-γ, and then phagocytosis mediated by each type of Fcγ receptor was evaluated by flow cytometry. FcγRIIA was the most efficient receptor for phagocytosis. FcγRIIIB could mediate phagocytosis but much less efficiently than FcγRIIA. Both FcγRIIA- and FcγRIIIB-mediated phagocytosis were blocked by inhibitors of Src family kinases, Syk, PI 3-K, and ERK. In contrast, interferon-γ-induced FcγRI was not able to mediate phagocytosis. Also, FcγRI did not activate ERK in the nucleus, but was however able to stimulate an efficient calcium rise. These data show that different neutrophil Fcγ receptors possess different phagocytosis capabilities: FcγRIIA and FcγRIIIB, but not FcγRI, promote phagocytosis.  相似文献   

5.
The innate immune system of insects consists of humoral and cellular components involved in the recognition of and responses to intruding foreign micro- or macroorganisms. Several molecules have been identified so far that recognize molecular patterns present on microorganisms, such as lipopolysaccharides, peptidoglycans and lipoteichonic acid. These molecules, acting as opsonins, trigger immune responses such as phagocytosis, nodule formation, melanization and encapsulation. Here, we investigated the role of calreticulin (CRT) present on the surface of Pieris rapae hemocytes in phagocytosis. Comparative phagocytosis assays using yeast cells showed that hemocytes from different insects exhibit significant variation in their phagocytosing potential and relative CRT involvement.  相似文献   

6.
Phagocytosis has been suggested as a marker of pathogenicity and virulence in Entamoeba histolytica. Irmgard Montfort and Ruy Pérez-Tamayo here review the evidence for this suggestion.  相似文献   

7.
Group IVα phospholipase A(2) (PLA(2)IVα) is a lipolytic enzyme that catalyzes the hydrolysis of membrane phospholipids to generate precursors of potent inflammatory lipid mediators. Here, the role of PLA(2)IVα in Fc receptor (FcR)-mediated phagocytosis was investigated, demonstrating that PLA(2)IVα is selectively activated upon FcR-mediated phagocytosis in macrophages and that it rapidly translocates to the site of the nascent phagosome. Moreover, pharmacological inhibition of PLA(2)IVα by pyrrophenone reduces particle internalization by up to 50%. In parallel, fibroblasts from PLA(2)IVα knock-out mice overexpressing FcγRIIA and able to internalize IgG-opsonized beads show 50% lower phagocytosis, compared with wild-type cells, and transfection of PLA(2)IVα fully recovers this impaired function. Interestingly, transfection of the catalytically inactive deleted PLA(2)IVα mutant (PLA(2)IVα(1-525)) and point mutant (PLA(2)IVα-S228C) also promotes recovery of this impaired function. Finally, transfection of the PLA(2)IVα C2 domain (which is directly involved in PLA(2)IVα membrane binding), but not of PLA(2)IVα-D43N (which cannot bind to membranes), rescues FcR-mediated phagocytosis. These data unveil a new mechanism of action for PLA(2)IVα, which demonstrates that the membrane binding, and not the enzymatic activity, is required for PLA(2)IVα modulation of FcR-mediated phagocytosis.  相似文献   

8.
Diacylglycerol kinase (DGK) plays an important role in phosphoinositide signaling cascade by regulating the intracellular level of diacylglycerol and phosphatidic acid. The DGK family is involved in various pathophysiological responses that are mediated through unique binding partners in different tissues and cells. In this study, we identified a small GTPase effector protein, IQGAP1, as a novel DGKζ-associated complex protein. A bacterial endotoxin, lipopolysaccharide (LPS), facilitated the complex formation in macrophages. Both proteins co-localized at the edge and phagocytic cup of the cell. Furthermore, RNA interference-mediated knockdown of DGKζ or IQGAP1 impaired LPS-induced Rac1 activation. Primary macrophages derived from DGKζ(-/-) mice attenuated LPS-induced phagocytosis of bacteria. These results suggest that DGKζ is involved in IQGAP1/Rac1-mediated phagocytosis upon LPS stimulation in macrophages.  相似文献   

9.
Phagocytosis of immunoglobulin G-opsonised particles takes place via Fcγ receptor ligation, leading to uptake through an actin-dependent mechanism. Myosin regulatory light chains have previously been reported to control contractility during uptake through the Fcγ receptor. In this study, we show that p21-activated kinase 4 contributes to Fcγ receptor-mediated uptake downstream of actin cup formation by regulating phosphorylation of myosin regulatory light chain. siRNA-mediated knockdown of p21-activated kinase 4 leads to reduced myosin regulatory light chain phosphorylation at Serine 19, with a corresponding reduction in phospho-myosin regulatory right chain localised to bound immunoglobulin G-opsonised red blood cells. p21-activated kinase 4 phosphorylates myosin light chain 9 at Serine 19 in vitro and RNA interference against myosin light chain 9 implicates this isoform, but not myosin light chain 12A or 12B, in Fcγ receptor-mediated uptake. Taken together, these data indicate that p21-activated kinase 4 regulates regulatory myosin light chain phosphorylation and myosin contractility during FcγR-mediated phagocytosis.  相似文献   

10.

Background

Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e.g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf®) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages.

Methods

Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages.

Results

Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage.

Conclusions

We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages.  相似文献   

11.
After weaning, during mammary gland involution, milk-producing mammary epithelial cells undergo apoptosis. Effective clearance of these dying cells is essential, as persistent apoptotic cells have a negative impact on gland homeostasis, future lactation and cancer susceptibility. In mice, apoptotic cells are cleared by the neighboring epithelium, yet little is known about how mammary epithelial cells become phagocytic or whether this function is conserved between species. Here we use a rat model of weaning-induced involution and involuting breast tissue from women, to demonstrate apoptotic cells within luminal epithelial cells and epithelial expression of the scavenger mannose receptor, suggesting conservation of phagocytosis by epithelial cells. In the rat, epithelial transforming growth factor-β (TGF-β) signaling is increased during involution, a pathway known to promote phagocytic capability. To test whether TGF-β enhances the phagocytic ability of mammary epithelial cells, non-transformed murine mammary epithelial EpH4 cells were cultured to achieve tight junction impermeability, such as occurs during lactation. TGF-β3 treatment promoted loss of tight junction impermeability, reorganization and cleavage of the adherens junction protein E-cadherin (E-cad), and phagocytosis. Phagocytosis correlated with junction disruption, suggesting junction reorganization is necessary for phagocytosis by epithelial cells. Supporting this hypothesis, epithelial cell E-cad reorganization and cleavage were observed in rat and human involuting mammary glands. Further, in the rat, E-cad cleavage correlated with increased γ-secretase activity and β-catenin nuclear localization. In vitro, pharmacologic inhibitors of γ-secretase or β-catenin reduced the effect of TGF-β3 on phagocytosis to near baseline levels. However, β-catenin signaling through LiCl treatment did not enhance phagocytic capacity, suggesting a model in which both reorganization of cell junctions and β-catenin signaling contribute to phagocytosis downstream of TGF-β3. Our data provide insight into how mammary epithelial cells contribute to apoptotic cell clearance, and in light of the negative consequences of impaired apoptotic cell clearance during involution, may shed light on involution-associated breast pathologies.Effective clearance of apoptotic cells is important in maintaining tissue homeostasis. Weaning-induced mammary gland involution is a unique model for studying apoptotic cell clearance, as 80–90% of the milk-producing mammary epithelium undergoes apoptosis to return the gland to a non-secretory state.1 Professional phagocytes, such as macrophages, are recruited into the involuting mammary gland; however, they are thought to have a limited role in the clearance of dying secretory cells, as in mice, peak macrophage infiltration occurs after the majority of apoptotic cell removal.2 Rather, the neighboring mammary epithelial cells themselves appear to be the primary cell type responsible for apoptotic cell clearance during involution.2 Rapid and efficient apoptotic cell clearance is essential, as persistence of apoptotic cells can result in the release of cell fragments into the local environment and subsequent autoimmunity.3 Importantly, impaired apoptotic cell clearance in the postpartum mammary gland results in local inflammation, fibrosis and epithelial cell hyperplasia.4, 5Although there is increasing evidence that phagocytosis by mammary epithelial cells has a crucial role in maintaining tissue homeostasis in the involuting murine mammary gland, little is known about how mammary epithelial cells become phagocytic during postpartum involution. One of the key changes in the mammary epithelium that may contribute to acquisition of a phagocytic phenotype is reorganization of epithelial cell junctions. During lactation, tight junctions between mammary epithelial cells become highly impermeable, which assures localization of milk within the mammary ducts.6 With weaning, this impermeability is lost,6 consistent with tight junction reorganization. Furthermore, reorganization of adherens junctions is also observed upon the switch from lactation to involution.7 Given that professional phagocytes such as macrophages do not exist in monolayers with cell cell junctions, disruption of epithelial cell junctions at the onset of mammary gland involution may be required for mammary epithelial cells to become phagocytic.One candidate cytokine for promoting epithelial cell junction reorganization and phagocytosis is transforming growth factor-β (TGF-β). Binding of TGF-β to the TGF-β type II receptor (TβRII) activates canonical signaling through a signaling cascade involving the TGF-β type I receptor, receptor-associated Smads (Smad2/3) and Smad4. TGF-β protein and mRNA levels are significantly increased in the mammary gland on the switch from lactation to involution, with increased expression persisting through at least 9 days post weaning.8, 9 Of the three TGF-β isoforms (TGF-β1, -β2 and -β3), TGF-β3 increases the greatest upon the lactation-to-involution switch.8, 9, 10, 11 Overexpressing TGF-β3 or depleting Smad3 or TβRII in the mammary epithelium reveals a necessary role for TGF-β in promoting apoptosis early during involution.10, 12, 13, 14 However, sustained TGF-β expression throughout the postpartum involution window suggests additional roles for TGF-β that extend beyond apoptosis induction, including influencing extracellular matrix remodeling and immune cell composition.8, 10, 12, 13, 14, 15 TGF-β is known to increase the phagocytic capacity of retinal pigment epithelial cells, fibroblasts and macrophages,16, 17, 18 although a role for TGF-β in mediating apoptotic cell clearance by phagocytic mammary epithelial cells has not been explored. Furthermore, TGF-β is implicated in tight junction disruption in the mammary gland and has known roles in adherens junction disassembly, making it an intriguing target to investigate in the promotion of a phagocytic phenotype in mammary epithelial cells.6, 19Currently, it is unknown whether the mammary epithelium has a role in apoptotic cell clearance in species other than mice. Therefore, we evaluated rat and human involution mammary tissue for apoptotic cell clearance by the mammary epithelium. Further, as addressing the role of TGF-β in promoting phagocytosis by mammary epithelial cells during gland involution is challenging due to impaired cell death in the absence of TGF-β signaling,12, 13, 14 we developed an in vitro model to investigate the role of TGF-β3 in mammary epithelial cell junction reorganization and phagocytosis.We demonstrate engulfment of apoptotic cells by mammary epithelial cells during weaning-induced involution in both rats and women, supportive of phagocytosis being a conserved feature of mammary epithelium during postpartum involution. Using our murine mammary epithelial culture model that mimics the high junctional resistance of the lactating gland, we show that TGF-β3 promotes phagocytic capability and identify a potential role for cell–cell junction disruption in epithelial cell phagocytosis. Furthermore, we identify a previously unreported role for the intramembrane protease γ-secretase in the promotion of phagocytosis by TGF-β3. In light of the negative consequences of impaired apoptotic cell clearance during postpartum involution,4, 5 our data provide insight into how mammary epithelial cells may contribute to apoptotic cell clearance during this time.  相似文献   

12.
SHIP and SHIP-2 are inositol phosphatases that regulate FcγR-mediated phagocytosis through catalytic as well as non-catalytic mechanisms. In this study we have used two-dimensional fluorescence difference gel electrophoresis (DIGE) analysis to identify downstream signaling proteins that uniquely associate with SHIP or SHIP-2 upon FcγR clustering in human monocytes. We identified LyGDI as a binding partner of SHIP, associating inducibly with the SHIP/Grb2/Shc complex. Immunodepletion and competition experiments with recombinant SHIP domains revealed that Grb2 and the proline-rich domain of SHIP were necessary for SHIP-LyGDI association. Functional studies in primary human monocytes showed that LyGDI sequesters Rac in the cytosol, preventing it from localizing to the membrane. Consistent with this, suppression of LyGDI expression resulted in significantly enhanced FcγR-mediated phagocytosis.  相似文献   

13.
S Yamauchi  K Kawauchi  Y Sawada 《FEBS letters》2012,586(19):3229-3235
Fcγ receptor (FcγR)-mediated phagocytosis requires myosin II activity. Here we show that myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup. Inhibition of myosin II attenuates phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of FcγR and binding of Syk to the ITAM. Furthermore, FcγR clusters independently of myosin II activity at the phagocytic cup, from which the receptor-like protein tyrosine phosphatase CD45 is excluded depending on myosin II activity. These findings suggest that myosin II-dependent segregation of CD45 from FcγR facilitates phosphorylation of the ITAM and triggers phagocytosis.  相似文献   

14.
Alzheimer disease is characterized by neuronal loss and brain plaques of extracellular amyloid β (Aβ), but the means by which Aβ may induce neuronal loss is not entirely clear. Although high concentrations of Aβ (μM) can induce direct toxicity to neurons, we find that low concentration (nM) induce neuronal loss through a microglia-mediated mechanism. In mixed neuronal-glial cultures from rat cerebellum, 250 nM Aβ1-42 (added as monomers, oligomers or fibers) induced about 30% loss of neurons between 2 and 3 days. This neuronal loss occurred without any increase in neuronal apoptosis or necrosis, and no neuronal loss occurred with Aβ42-1. Aβ greatly increased the phagocytic capacity of microglia and induced phosphatidylserine exposure (an "eat-me" signal) on neuronal processes. Blocking exposed phosphatidylserine by adding annexin V or an antibody to phosphatidylserine or inhibiting microglial phagocytosis by adding either cytochalasin D (to block actin polymerization) or cyclo(RGDfV) (to block vitronectin receptors) significantly prevented neuronal loss. Loss of neuronal synapses occurred in parallel with loss of cell bodies and was also prevented by blocking phagocytosis. Inhibition of phagocytosis prevented neuronal loss with no increase in neuronal death, even after 7 days, suggesting that microglial phagocytosis was the primary cause of neuronal death induced by nanomolar Aβ.  相似文献   

15.
FcγR-mediated phagocytosis is a cellular event that is evolutionary conserved to digest IgG-opsonized pathogens. Pseudopod formation during phagocytosis is a limiting step in managing the uptake of particles, and in this paper, we show that the conventional kinesin is involved in both receptor and membrane delivery to the phagocytic cup. Expression of a mutant kinesin isoform (GFP dominant negative mutant of kinesin H chain [EGFP-Kif5B-DN]) in RAW264.7 cells significantly reduced binding of IgG-sheep RBCs when macrophages were faced with multiple encounters with opsonized particles. Scanning electron microscopy analysis of EGFP-Kif5B-DN-expressing cells challenged with two rounds of IgG-sheep RBCs showed sparse, extremely thin pseudopods. We saw disrupted Rab11 trafficking to the phagocytic cup in EGFP-Kif5B-DN-transfected cells. Our particle overload assays also implicated phagosome membrane recycling in pseudopod formation. We observed reduced phagosome fission and trafficking in mutant kinesin-expressing cells, as well as reduced cell surface expression of FcγRs and Mac-1 receptors. In conclusion, anterograde trafficking via kinesin is essential for both receptor recycling from the phagosome and delivery of Rab11-containing membrane stores to effect broad and functional pseudopods during FcγR-mediated phagocytosis.  相似文献   

16.
Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.  相似文献   

17.
18.
Nitric oxide (NO) is a signaling and defense molecule of major importance. NO endows macrophages with bactericidal, cytostatic as well as cytotoxic activity against various pathogens. Bacillus spores can produce serious diseases, which might be attenuated if macrophages were able to kill the spores on contact. Present research was carried out to study whether glycoconjugates stimulated NO and nitric oxide synthase (NOS2) production during phagocytosis killing of Bacillus spores. Murine macrophages exposed to glycoconjugate-treated spores induced NOS2 and NO production that was correlated with high viability of macrophages and killing rate of bacterial spores. Increased levels of inducible NOS2 and NO production by macrophages in presence of glycoconjugates suggested that the latter provide an activation signal directed to macrophages. Glycoconjugates were shown to exert a protective influence, sparing macrophages from spore-induced cell death. In presence of glycoconjugates, macrophages efficiently kill the organisms. Without glycoconjugate activation, murine macrophages were ineffective at killing Bacillus spores. These results suggest that glycoconjugates promote killing of Bacillus spores by blocking spore-induced macrophage cell death, while increasing their activation level and NO and NOS2 production. Glycoconjugates suggest novel antimicrobial approaches to prevention and treatment of infection caused by bacterial spores.  相似文献   

19.
Clinical and laboratory investigations have provided evidence that ethanol suppresses normal lung immunity. Our initial studies revealed that acute ethanol exposure results in transient suppression of phagocytosis of Pseudomonas aeruginosa by macrophages as early as 3 h after initial exposure. Focusing on mechanisms by which ethanol decreases macrophage Fcγ-receptor (FcγR) phagocytosis we targeted the study on the focal adhesion and cytoskeletal elements that are necessary for phagosome progression. Ethanol inhibited macrophage phagocytosis of IgG-coated bead recruitment of actin to the site of the phagosome, dampened the phosphorylation of vinculin, but had no effect on paxillin phosphorylation suggesting a loss in "phagosomal adhesion" maturation. Moreover, our observations revealed that FcγR-phagocytosis induced Rac activation, which was increased by only 50% in ethanol exposed cells, compared to 175% in the absence of ethanol. This work is the first to show evidence of the cellular mechanisms involved in the ethanol-induced suppression of FcγR-mediated phagocytosis.  相似文献   

20.
Phagocytosis was studied in vitro using coelomic fluid of the Antarctic starfish Odontaster validus at 0°C. The number of coelomocytes present was determined and the phagocytic activity of the phagocytic amoebocytes (PA) was quantified with yeast during incubations of 1 and 2 h. The percentage of PA phagocytosing increased significantly from 42.29 ± 10.50% (SD) at 1 h to 52.57 ± 13.96% at 2 h. Numbers of yeast per PA also rose significantly from 2.27 to 2.45 cells per amoebocyte, indicating that phagocytic activity was maintained. In vitro phagocytosis of an Antarctic invertebrate at 0°C is shown for the first time, and the types of amoebocytes involved identified. Rates of phagocytosis were similar to, or higher than, reported data for temperate starfish, although this conclusion must be treated cautiously because of scarcity of data and differences in methods used. However, the data suggest that phagocytosis in O. validus is well adapted to low temperature. Accepted: 27 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号