首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenolic acids, both benzoic and cinnamic acid derivatives, are plant metabolites with high therapeutic and cosmetic values. Methanolic extracts from the biomass of shoot and callus cultures of Aronia melanocarpa growing on seven variants of the Murashige and Skoog (MS) medium with different concentrations of plant growth regulators, BA and NAA, ranging from 0.1 to 3.0 mg l?1, were examined for the production of free phenolic acids and cinnamic acid using the high-performance liquid chromatography (HPLC) method. The extracts from the shoot and callus cultures were confirmed to contain five of the twelve compounds tested for: caffeic, p-coumaric, p-hydroxybenzoic, syringic and vanillic acids. The shoot extracts contained additionally salicylic acid. Both the total amounts and the amounts of individual compounds in either the shoot or callus extracts were dependent on the concentration of cytokinin and auxin in the MS medium variants. The total amounts in the shoot and callus cultures were in the range from 93.52 to 217.00 mg 100 g?1 DW and from 47.11 to 83.83 mg 100 g?1 DW, respectively. The amounts of individual compounds showed wide variation, from 1.31 to 91.86 mg 100 g?1 DW in the shoot extracts, and from 2.58 to 40.16 mg 100 g?1 DW in the callus extracts. Salicylic acid (max. 91.86 mg 100 g?1 DW), p-coumaric acid (max. 62.39 mg 100 g?1 DW) and p-hydroxybenzoic acid (max. 50.66 mg 100 g?1 DW) dominated in the shoot extracts, while syringic acid (max. 40.16 mg 100 g?1 DW) and p-hydroxybenzoic acid (max. 23.59 mg 100 g?1 DW) were the main metabolites in the callus extracts. This is the first report on the quantitative analysis of benzoic and cinnamic acid derivatives in shoot and callus cultures of A. melanocarpa growing on MS-based media with different concentrations of selected plant growth regulators—BA and NAA. The obtained maximum amounts of some metabolites are of interest from a practical perspective.  相似文献   

2.
Phenolic acids are plant metabolites important in phytotherapy and also in cosmetology. In this study, proliferating shoot and callus cultures of Aronia melanocarpa were established and maintained on Linsmaier and Skoog (L-S) medium containing different levels of α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA), ranging from 0.1 to 3.0 mg l?1. Methanolic extracts from the biomass of these cultures and from the fruits of soil-grown plants were used to determine the amounts of free phenolic acids and cinnamic acid using the high-performance liquid chromatography (HPLC) method. Out of a total of twelve analyzed compounds, all of the extracts contained four of them: caffeic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid. Moreover, shoot extracts also contained salicylic acid (o-hydroxybenzoic acid), while callus extracts contained p-coumaric acid. On the other hand, fruit extracts also contained both salicylic acid and p-coumaric acid. The total amount of the analyzed compounds in extracts from both shoot and callus cultures depended on the L-S medium used, and varied between 103.05 and 150.95 mg 100 g?1 dry weight (DW), and between 50.23 and 81.56 mg 100 g?1 DW, respectively. Both types of culture contained higher levels of phenolic acids than the fruit extracts (32.43 mg 100 g?1 DW). In shoot cultures, p-hydroxybenzoic acid and salicylic acid were the predominant metabolites (reaching 55.14 and 78.25 mg 100 g?1 DW, respectively), while in callus cultures, p-hydroxybenzoic acid (25.60 mg 100 g?1 DW) and syringic acid (41.20 mg 100 g?1 DW) were the main compounds. In fruit extracts, salicylic acid (15.60 mg 100 g?1 DW) and p-hydroxybenzoic acid (5.29 mg 100 g?1 DW) were predominant.  相似文献   

3.
An efficient callus proliferation system for Rheum franzenbachii Munt., a rare medicinal plant, has been developed. Callus induced from leaf explants incubated on Murashige and Skoog (MS) medium with appropriate supplements of plant growth regulators. In the 6-benzylaminopurine (6-BAP) in combination with α-naphthalene acetic acid (NAA) treatments, different concentrations of NAA showed different induction effects on explants. When concentration of 6-BAP was as high as 2.0 mgl?1 in combination with 0.5 mgl?1 NAA, the callus induction rate reached 58.3%. N-phenyl-N’-1,2,3-thiadiazol-5-ylure (TDZ) in combination with NAA was very suitable for callus proliferation compared to TDZ in combination with 2,4-dicholorophenoxy acetic acid (2,4-D) or TDZ in combination with indole-3-acetic acid (IAA). Fresh and dry weight of callus cultured on MS medium supplemented with 0.5 mgl?1 TDZ in combination with 0.2 mgl?1 NAA increased 26.3 and 15.0 times within 35 days culture, respectively. Quantitative analysis of rhaponticin by HPLC showed that the phytochemical profile of callus was similar to that of wild plants, and the content of rhaponticin in callus cultured on MS medium supplemented with 0.5 mgl?1 TDZ and 0.2 mgl?1 NAA was 16.6 mgg?1DW compared to that of 4.0 mgg?1 DW in wild plants.  相似文献   

4.
Linum usitatissimum: L. is well-known for production of pharmacologically important secondary metabolites. Due to their tremendous beneficial effects on human health, these compounds are receiving greater attention throughout the World, especially in the treatment of various types of cancers. In present study, we have developed an efficient protocol for production of lignans like secoisolariciresinol diglucoside (SDG) and lariciresinol diglucoside (LDG) and neo-lignans like dehydrodiconiferyl alcohol glucoside (DCG) and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) by exploiting in vitro callus cultures of Flax. These cultures were established from stem and leaf explants, inoculated on Murashige and Skoog (MS) media supplemented with various concentrations of α-naphthalene acetic acid (NAA), thidiazuron (TDZ) and 6-benzyl adenine (BA). Results revealed that the leaf-derived calli (1.0 mg/l NAA) accumulated highest levels of biomass (DW; 15.7 g/l) and antioxidant activity, while highest production of total phenolics (111.09 mg/l) and flavonoids (45.02 mg/l) were observed in stem-derived calli (1.0 mg/l NAA). The high-performance liquid chromatography (HPLC) analysis revealed that the stem-derived calli (1.0 mg/l NAA) accumulated optimum concentrations of SDG (2.7?±?0.021 mg/g DW), LDG (9.8?±?0.062 mg/g DW) and DCG (13.8?±?0.076 mg/g DW), while leaf-derived calli (1.0 mg/l NAA) showed optimum accumulation of GGCG (3.8?±?0.022 mg/g DW) as compared to all other treatments. These results provided definite evidence that the NAA differentially influence the production of lignans and neo-lignans in callus culture of Flax. This study opens new dimensions to devise strategies to enhance the production of these valuable metabolites.  相似文献   

5.
Two efficient morphogenetic pathways for micropropagation of Bletilla striata (Thunb.) Reichb. f. have been established through the callus-mediated and direct formation of protocorm-like bodies (PLBs) from protocorms and shoot tips. Green calli were induced from the basal surface of protocorms and the cut-end of shoot tips on Vacin and Went (VW) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or α-naphthalene acetic acid (NAA) after 3–5 weeks, with the highest frequency of explants forming callus (48.0 %) from protocorms at 1.0 mg l?1 2,4-D. The calli obtained from all plant growth regulator (PGR) treatments could proliferate and differentiate PLBs on the PGR-free medium. NAA and 2,4-D significantly enhanced the growth of callus. The fastest growth rate of callus was achieved at the combination of 1.0 mg l?1 2,4-D and 1.0 mg l?1 TDZ with 46.2-fold within 3 months. The regeneration of PLBs from callus was significantly improved by 6-benzyladenine (BA), and a mean number of 48.4 PLBs was produced from 100 mg calli at 1.0 mg l?1 BA within 3 months. BA and thidiazuron (TDZ) promoted the direct formation of PLBs from explants. The highest frequency of direct PLBs formation (76.0 %) and the highest mean number of PLBs per explant (30.2) were observed in protocorms cultured with 0.5 mg l?1 BA. Assessment of clonal fidelity by inter-simple sequence repeat (ISSR) markers revealed similarity ranges of 99.8–100.0 % between the regenerants and their mother plants and 99.5–100.0 % among the regenerants, which suggested the micropropagation protocols were genetically stable.  相似文献   

6.
Ephedra major Host, a medicinal plant, belongs to the family of Ephedraceae. Ephedrine is the main alkaloid in Ephedra, which has different medicinal properties. However, the amount of ephedrine in plant material is low and callus culture can be a way to increase the alkaloid content. The aim of this research was to compare Murashige and Skoog (MS) and Gamborg’s B5 culture media for callus induction and ephedrine production. For this purpose, stem explants were cultured on MS or B5 media containing 0.0, 0.5, 1.0, 2.0, or 3.0 mg L?1 of kinetin (Kin) either alone or in combination with 0.0, 0.5, 1.0, or 2.0 mg L?1 2,4-dichlorophenoxyacetic acid (2,4-D) and/or naphthalenacetic acid (NAA), in five replicates. MS medium containing 1.0 or 2.0 NAA and 0.5 mg L?1 Kin were the most effective for callus induction. The highest percentage of callus induction (100%) on B5 culture medium was obtained with 2.0 2,4-D and 0.5 mg L?1 Kin treatments. The results showed that there was no significant difference between MS and B5 media for callus induction, and fresh and dry weight production. High-performance liquid chromatography was conducted for the identification and quantification of ephedrine in the obtained callus. The highest level of ephedrine (7.38 mg g?1 DW) was found in callus grown on MS medium containing 0.5 mg L?1 of 2,4-D. The results revealed that ephedrine can accumulate in callus cultures to levels much higher than in E. major wild plants.  相似文献   

7.
The genus Tribulus is the source of a number of steroidal saponins and other bioactive compounds which are of medicinal and pharmaceutical importance and plant regeneration of Tribulus terrestris has been reported. The objective of this study was to evaluate the potential of immature zygotic embryos of Tribulus terrestris as an explant for plant regeneration. Embryos were cultured on MS medium supplemented with 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ), alone or in combination and callus and shoot or embryo formation evaluated. With 2.5 mg/l NAA or 2,4-D, callus formation frequency was 100% but 57% with 2.5 mg/l TDZ. The combination of 2.5 mg/l TDZ and NAA or 2,4-D also elicited callus formation frequency of 100%. The callus formation frequency was lower with lower levels of these growth regulators. On a medium with 0.5 mg/l TDZ, 17.4% of the 2,4-D-derived callus (2.5 mg/l), developed embryo-like structures and this increased to 37.3 and 41.4% respectively, when TDZ was combined with 0.5 mg/l indole-3-butyric acid (IBA) or 2,4-D. Both shoot formation and embryo-like structures developed in cultures with 2.5 mg/l TDZ, alone or in combination with 0.5 mg/l IBA or 2,4-D. The optimum sucrose level for morphogenetic response of embryo-derived callus was between 5.0 and 7.5%. Embryo-like structures were also observed when the 2,4-D-derived callus was cultured in a liquid containing benzyladenine (BA) and IBA. Plants were regenerated from both embryo-like structures and shoot buds on solid MS medium containing 0.2 mg/l IBA and rooted plantlets were transferred to soil.  相似文献   

8.
Saffron calli were induced from ovary explants on Murashige-Skoog (MS) medium supplemented with beyzyladenine (BA) and naphthalene acetic acid (NAA) as growth factors. MS medium with 5 mg l?1 BA and 10 mg l?1 NAA was selected for calli induction and undifferentiated calli growth, while MS medium with 1 mg l?1 BA and 1 mg l?1 NAA was the most appropriate for stigma differentiation. On this medium, stigma-like structures measuring 0.5–1.5 cm were obtained. Initially they were colourless, but yellow pigmentation, due to the presence of crocin, progressively increased with calli growth. Extracts of stigma-like structures were analysed by HPLC and the presence of saffron secondary metabolites was demonstrated. In addition, calli also showed yellow pigmentation.  相似文献   

9.
Plumbago zeylanica L., an important medicinal herb, possesses plumbagin, a valuable secondary metabolite. Roots of this plant, collected from four locations in Himachal Pradesh, India, were screened for plumbagin content with high-performance liquid chromatography. The chemotype collected from Hamirpur yielded the highest content (26.47?±?0.63 mg g?1 dry weight). Callus cultures were established from nodal explants of this chemotype on Murashige and Skoog (MS) medium augmented with α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid, (2,4-D), 6-benzyladenine (BA), isopentenyl adenine (2iP), or thidiazuron, (TDZ). After 45 d, 98% of the cultures induced bright-green, compact callus on MS?+?5 μM TDZ. Upon subculturing, this callus differentiated an average of 4.08?±?1.16 shoots in 62.5% of the cultures. After elongation on basal MS medium, excised shoots were transferred to indole-3-acetic acid, NAA, or IBA supplemented MS medium. A maximum of 4.3?±?1.36 roots with an average length of 15.31?±?2.76 cm were recorded on 5 μM IBA. Rooted plantlets were successfully acclimatized in a greenhouse, and their genetic fidelity was evaluated using inter simple sequence repeats and start codon targeted molecular markers, which revealed 97% similarity. A significant increase in plumbagin content (6.5- and 3.4-fold) was achieved in root callus employing 100 mg L?1 yeast extract (YE) and 25 μM salicylic acid (SA), respectively. This is the first report of large-scale propagation of P. zeylanica and an increase of plumbagin through in vitro root callus.  相似文献   

10.
20-Hydroxyecdysone is one of the most common ecdysteroids in plants with potential therapeutic applications. In this study, cell suspension cultures of Achyranthes aspera were raised in shake flasks to investigate the production of 20-hydroxyecdysone. The quantification and characterization of 20-hydroxyecdysone in the cultures were done by High performance liquid chromatography (HPLC) and Liquid Chromatography-quadrupole time-of- flight mass spectrometry (LC-Q-TOF) analyses. For raising the suspension, calli initiated from in vitro grown leaf explants were cultured in liquid Murashige and Skoog (MS) medium augmented with combinations of 2, 4-dichlorophenoxyacetic acid (1 mg L?1) and α-naphthaleneacetic acid (1 mg L?1). Maximum growth index of the cell suspension was 9.9, which was achieved during 20th day of culture (final phase of exponential growth). At this stage, the biomass accumulated was 1.09 ± 0.09 g dry weight (DW) and the 20-hydroxyecdysone concentration was 0.24 mg g?1 DW. Eliciting the cultures with 0.6 mM Methyl jasmonate for 6 days; enhanced the production of 20-hydroxyecdysone production to 0.35 mg g?1 DW. By augmenting the cultures with the precursors namely cholesterol (10 mg L?1) and 7-dehydrocholesterol (10 mg L?1), production of 20-hydroxyecdysone was boosted to 0.31 mg g?1 DW and 0.28 mg g?1 DW respectively.  相似文献   

11.
A protocol for regenerating and subsequent in vitro flowering of an economical important and endangered medicinal orchid, Dendrobium huoshanense, was established mainly via indirect protocorm-like body (PLB) formation. A four-step method was developed to induce successful plant regeneration on 1/2 MS medium supplemented with suitable plant growth regulators (PGRs). Step 1 (callus induction): the root tip explants (1 cm long) were cultured at 1 mg l?1 2,4-D + 1 mg l?1 TDZ for 3 months. Step 2 (callus proliferation): the calli were subcultured with a 1-month interval at 1 mg l?1 2,4-D + 1 mg l?1 TDZ. Step 3 (PLB induction): the calli were cultured at 2 mg l?1 NAA + 1 mg l?1 BA for 2 months. Step 4 (plantlet conversion): the 2-month-old PLBs were cultured at 0.1 mg l?1 IBA for 4 months. It took at least 6 months to produce well-rooted regenerated plantlets with an average of 3.2 roots and 3.6 leaves from the initial callus. The 6-month-old rooted plantlets were transferred onto PGR-free 1/2 MS medium for 6 months, and then potted with Sphagnum moss for acclimatization. After 2 month of culture, the survival rate was 100 %. The in vitro flowers were obtained on the 8-month-old plantlets at 1 mg l?1 IBA, 5 mg l?1 IBA and 0.1 mg l?1 NAA, but the flowers showed a lack of the gynandrium. The abnormity was overcome by the aid of 5 mg l?1 TDZ, and subsequently, the capsules formed without artificial pollination. This protocol provides the basis for further investigation on cell suspension, micropropagation, in vitro flowering and breeding programs in Dendrobium huoshanense.  相似文献   

12.
Sandalwood (Santalum album L.) is a small evergreen, hemi-parasitic tree having more than 18 woody species that are mostly distributed in South Asia, Australia, and Hawaii. Its economical importance is derived from its heartwood oil, but its difficult propagation makes conservation essential. The percentage of seed germination is poor and germination time exceeds 12 mo. Vegetative propagation can be accomplished by grafting, air layering, or with root suckers, but the production of clones is inefficient and time consuming. In this study, efficient plant regeneration was achieved via indirect organogenesis from callus cultures derived from leaf tissues of S. album. Callus induction was induced when leaf explants were cultured on woody plant media (WPM) supplemented with either thidiazuron (TDZ) or 2,4-dichlorophenoxyacetic acid. The highest callus frequency (100%) was obtained when leaf tissue was cultured in the medium with 0.4 mg?l?1 TDZ. Fresh weight (141.92 mg) and dry weight (47 mg) of leaf-derived callus were highest in the medium supplemented with 0.8 mg?l?1 TDZ. The WPM medium supplemented with 2.5 mg?l?1 BA?+?0.4 mg?l?1 NAA was the most effective, producing the highest number of shoot buds (24.6) per callus. The highest number of shoots per explant (20.67) and shoot length (5.17 cm) were observed in media supplemented with 5.0 mg?l?1 BA and 3.0 mg?1?1 Kn, respectively. Plantlets were rooted on WPM medium with different concentrations of indole-3-butyric acid (IBA). The highest rooting percentage (91.67) and survival were achieved using WPM media with 1.5 mg?l?1 IBA. All plantlets survived acclimatization, producing healthy plants in the greenhouse. The current investigation showed efficient in vitro regeneration capabilities of S. album from leaf explants.  相似文献   

13.
Callus cultures of the endemic South-African legume Cyclopia subternata were cultivated under varying light and temperature conditions to determine their influence on biomass growth and bioflavonoids accumulation. Experimental modifications of light included complete darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli were also subjected to elevated temperature or cold stress. Among the tested light regimes, cultivation under blue light resulted in the highest levels of hesperidin (H)—118.00 mg 100 g?1 dry weight (DW) on 28 days of experiment, as well as isoflavones: 7-O-β-glucosides of calycosin (CG), pseudobaptigenin (PG) and formononetin (FG)—28.74, 19.26 and 10.32 mg 100 g?1 DW, respectively, in 14-days old calli. UVC irradiation applied on 20 days stimulated the accumulation of H (204.14 mg 100 g?1 DW), CG (31.84 mg 100 g?1 DW) and PG (18.09 mg 100 g?1 DW) in 28 days culture by 140, 46 and 165 %, respectively, without negatively influencing callus growth. Low temperature (13 °C) increased CG content by over 1,500 % (235.29 mg 100 g?1 DW) when applied during the whole 28-days growth cycle, at the same time causing 95 % decrease in culture growth in comparison to reference calli maintained at 24 °C. On the contrary, elevated temperature (29 °C) applied during the second half of the culture period resulted in over 300 and 500 % increase in CG and PG content (61.76 and 58.89 mg 100 g?1, respectively) while maintaining relatively high biomass yield.  相似文献   

14.
Eryngium planum L. cell and organ cultures were maintained on Murashige and Skoog media (MS), supplemented with exogenous hormones of different types and various concentrations for high biomass growth. The callus and cell suspension cultures were treated with increased sucrose concentration and/or elicited by methyl jasmonate for the enhancement of selected phenolic acids accumulation. Three phenolic acids, rosmarinic acid (RA), chlorogenic acid (CGA) and caffeic acid (CA), were detected by HPLC-DAD in those cultures. The sum of their content in the dry material was found to be higher in the shoot culture (3.95 mg g?1), root culture (7.05 mg g?1), callus (6.20 mg g?1) and cell suspension (2.04 mg g?1) than in the leaves (1.87 mg g?1) and roots (0.76 mg g?1) of intact plants. The major compound of in vitro cultures was always rosmarinic acid. The content of RA could be increased approximately threefold (16.24 mg g?1) in the callus culture and approximately twofold (3.91 mg g?1) in the cell suspension culture by elicitation with 100 μM methyl jasmonate (MeJA). The higher concentration of sucrose (S) in the medium (5, 6 %) led to over a twofold increase of CGA content in the callus culture (2.54 mg g?1). The three mentioned phenolic acids have been found in E. planum undifferentiated and differentiated in vitro cultures for the first time.  相似文献   

15.
The optimal culture medium for the production of flavonoid compounds from Orostachys cartilaginea V. N. Boriss. calluses was studied. In callus cultures of O. cartilaginea, the flavonoid monomer content, in decreasing order was kaempferol-3-O-rutinoside (Kp-3-rut), quercetin 3-O-glucoside (Qc-3-glc), epicatechin gallate (Ecg), kaempferide (Ke), and quercetin (Qc). The results of the uniform design experiment indicated that the production of Qc, Ke, Qc-3-glc, Kp-3-rut, and total flavonoids were satisfactory in callus grown on full salt strength (1×) of Murashige and Skoog (MS) medium supplemented with 3.5 mg L?1 6-benzylaminopurine (BA) and 0.1 mg L?1 1-naphthalene acetic acid (NAA). By contrast, only Ecg was found in callus grown on 0.75× MS medium supplemented with 1.5 mg L?1 BA and 0.3 mg L?1 NAA. A phosphate concentration of 1.25 mM in the MS medium favored the production of Qc and Ke, whereas 0.75 mM phosphate was optimal for the production of Ecg, Qc-3-glc, Kp-3-rup, and total flavonoids. The NH4 +/NO3 ? ratios of 30/30 mM in the MS medium promoted Ke, Ecg, Qc-3-glc, Kp-3-rup, and total flavonoid production. However, a NH4 +/NO3 ? ratio of 20/40 mM enhanced Qc production. The effect of sucrose concentrations on the accumulation of different flavonoid monomers was comparatively more regular. The flavonoid content increased as the sucrose concentration increased from 20 to 40 g L?1, peaked at 40 g L?1, and decreased at concentrations greater than 40 g L?1. Therefore, 40 g L?1 sucrose was optimal for the production of the five flavonoid monomers and total flavonoids. The present findings demonstrate the possibility of producing flavonoid compounds from O. cartilaginea callus.  相似文献   

16.
Eclipta alba (False daisy) is an important medicinal plant with well-known antihepatotoxic activity. However, no previous in vitro studies are available for its callus culture for increased production of antioxidant secondary metabolites. Herein, we maintained a competent protocol for callus culture of E. alba using stem and leaf explants grown on MS medium containing various concentrations of thidiazuron, 6-benzylaminopurine (BAP) either alone or in association with α-naphthalene acetic acid (NAA). Among all the applied plant growth regulators, BAP along with NAA resulted in maximal dry biomass of 18.0 and 13.8 g/l for stem and leaf explants, respectively. Furthermore, the highest production of phenolics (375.7 mg/l for stem-associated callus and 298 mg/l for leaf-associated callus) and flavonoids (62.0 and 52.3 mg/l for stem- and leaf-associated callus, respectively) were found to be present in optimized callus culture. Antioxidant activity was also elucidated for both stem and leaf derived calli. The highest antioxidant activities (~?93.5%) were witnessed for stem and leaf associated calli at set concentrations of 3.0 mg/l BAP?+?1.0 mg/l NAA and 4.0 mg/l BAP, respectively. High-performance liquid chromatography analyses revealed optimum accumulation of coumarin (1.98 mg/g DW) and wedelolactone (49.63 mg/g DW) in leaf associated callus and desmethylwedelolactone (69.96 mg/g DW), β-amyrin (0.8179 mg/g DW) and eclalbatin (0.3202 mg/g DW) in stem associated callus at optimized concentration.  相似文献   

17.
Clinacanthus nutans (Burm.F.) Lindau is an herbaceous plant that has long been used for traditional medicinal purposes in Asia. It has recently gained popularity as an alternative treatment for cancer. The aim of this study was to establish cell suspension cultures of C. nutans and to identify targeted bioactive compounds in the cultures. Young leaf explants were cultured on Murashige and Skoog medium supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin to identify a suitable medium for callus induction and proliferation. Proliferated, friable calluses were cultured in different combinations of plant growth regulators (2,4-D, naphthaleneacetic acid [NAA], picloram, kinetin, and 6-benzylaminopurine) in liquid medium to establish cell suspension cultures. Three cell lines of suspension culture, callus, and intact plant parts were subjected to ethyl acetate extraction followed by thin layer chromatography for identification of selected bioactive compounds. Medium supplemented with 0.25 mg L?1 2,4-D and 0.75 mg L?1 kinetin was found to be optimal for callus induction, whereas supplementation with 0.50 mg L?1 2,4-D was efficient for callus proliferation. Liquid medium supplemented with 0.25 mg L?1 2,4-D and 0.50 mg L?1 NAA produced the highest growth index (2.52). Quercetin, catechin, and luteolin were present together in the callus and cell suspension cultures of C. nutans, but all three compounds were detected separately in young leaves, mature leaves, and stems. This study is the first to report the establishment of cell suspension culture of C. nutans with both cell and callus cultures producing quercetin, catechin, and luteolin.  相似文献   

18.
We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L?1 BAP + 1.0 mg L?1 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L?1 BAP + 0.5 mg L?1 NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot.  相似文献   

19.
The first protocol for in vitro plant regeneration from different explants of Bituminaria bituminosa, a pasture and medicinal species, has been established. Three explant types (petiole, leaflet and petiole-leaflet attachment “PLA”) cultured on media with different combinations of benzylaminopurine (BA; 5.0, 10.0 or 20.0 μM) and naphthalene acetic acid (NAA) or indole acetic acid (IAA; 0.5 or 5.0 μM) were tested for calli induction, and with 5 μM BA + 0.5 μM NAA or IAA for shoot development. The average number of shoots (≥5 mm) per callus depended on the explant type and the calli induction medium. The highest average number of shoots per callus was achieved by culturing leaflet and PLA explants on 5 μM IAA + 10 μM BA for calli induction and on 0.5 μM IAA + 5 μM BA for shoot development, and by culturing petiole explants on 0.5 μM NAA + 10 μM BA followed by a second culture on 0.5 μM NAA + 5 μM BA. The highest frequency of shoot rooting was achieved with 10.0 μM NAA and 1.0 μM gibberellic acid (GA3). Rooted plants were acclimatised in a culture chamber, reaching 96 % survival. Acclimatised plants were transferred to a greenhouse and finally to the field, reaching 100 % survival. The furanocoumarin (FC) accumulation was evaluated in organogenic calli, in vitro shoots, ex vitro plants in the greenhouse and in ex vitro plants in the field (after 1 and 4 months of acclimatisation). The content of FCs depended on the plant material evaluated, being higher in ex vitro plants in the field (up to 9,824 μg g?1 DW total FC) and lowest in organogenic calli (up to 50 μg g?1 DW total FC). This effect may be due to cell organization, longer exposure to environmental factors and the developmental stage.  相似文献   

20.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号