首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Responses to social cues, such as pheromones, can be modified by genotype, physiology, or environmental context. Honey bee queens produce a pheromone (queen mandibular pheromone; QMP) which regulates aspects of worker bee behavior and physiology. Forager bees are less responsive to QMP than young bees engaged in brood care, suggesting that physiological changes associated with behavioral maturation modulate response to this pheromone. Since 3′,5′-cyclic guanosine monophosphate (cGMP) is a major regulator of behavioral maturation in workers, we examined its role in modulating worker responses to QMP. Treatment with a cGMP analog resulted in significant reductions in both behavioral and physiological responses to QMP in young caged workers. Treatment significantly reduced attraction to QMP and inhibited the QMP-mediated increase in vitellogenin RNA levels in the fat bodies of worker bees. Genome-wide analysis of brain gene expression patterns demonstrated that cGMP has a larger effect on expression levels than QMP, and that QMP has specific effects in the presence of cGMP, suggesting that some responses to QMP may be dependent on an individual bees’ physiological state. Our data suggest that cGMP-mediated processes play a role in modulating responses to QMP in honey bees at the behavioral, physiological, and molecular levels.  相似文献   

2.
Levels of the biogenic amines dopamine, serotonin, and octopamine were measured in different brain regions of adult worker honey bees as a function of age-related division of labor, using social manipulations to unlink age and behavioral state. In the antennal lobes, foragers had higher levels of all three amines than nurses, regardless of age. Differences were larger for octopamine than serotonin or dopamine. In the mushroom bodies, older bees had higher levels of all three amines than younger bees, regardless of behavioral state. These correlative results suggest that increases in octopamine in the antennal lobes may be particularly important in the control of age-related division of labor in honey bees. Accepted: 10 February 1999  相似文献   

3.
Changes in circadian rhythms of behavior are related to age-based division of labor in honey bee colonies. The expression of the clock gene period (per) in the bee brain is associated with age-related changes in circadian rhythms of behavior, but previous efforts to firmly associate per brain expression with division of labor or age have produced variable results. We explored whether this variability was due to differences in light and flight experience, which vary with division of labor, or differences in colony environment, which are known to affect honey bee behavioral development. Our results support the hypothesis that per mRNA expression in the bee brain is developmentally regulated. One-day-old bees had the lowest levels of expression and rarely showed evidence of diurnal fluctuation, while foragers and forager-age bees (> 21 days of age) always had high levels of brain per and strong and consistent diurnal patterns. Results from laboratory and field experiments do not support the hypothesis that light, flight experience, and colony type influence per expression. Our results suggest that the rate of developmental elevation in per expression is influenced by factors other than the ones studied in our experiments, and that young bees are more sensitive to these factors than foragers.  相似文献   

4.
MicroRNA (miRNA)是一类长度为18~24 nt的内源性非编码小RNA分子,它能通过与靶标mRNA 分子互补结合抑制蛋白质翻译或导致 mRNA 降解,从而调控靶基因表达。蜜蜂是重要的社会性经济昆虫,一直是国际上热门的研究对象。迄今为止,通过各种生物技术在蜜蜂中发现已鉴定注册的miRNA共有218个,对蜜蜂miRNA的研究表明其在蜜蜂的胚胎发育、级型分化、劳动分工和免疫防御等方面可能具有重要的调控作用。本文就miRNA对蜜蜂蜂王和工蜂级型分化、哺育蜂和采集蜂劳动分工、舞蹈行为、脑部神经功能及免疫防御等方面调控作用的最新研究进展进行了综述,以期为进一步研究miRNA提供借鉴和参考。  相似文献   

5.
Colony reproduction in honey bees involves complex interactions between sterile workers and reproductive castes. Although worker–queen interactions have been studied in detail, worker–drone interactions are less well understood. We investigated caste interactions in honey bees by determining the age and behavior of workers that perform vibration signals, trophallaxis, and grooming with drones. Workers of all ages could engage in the different interactions monitored, although workers that performed vibration signals on drones were significantly older than those engaging in trophallaxis and grooming. Only 3–8% of workers engaged in the different behaviors were monitored. Compared with workers that performed vibration signals only on workers (‘worker vibrators’), those that performed signals on both workers and drones (‘drone vibrators’) had greater movement rates inside the nest, higher vibration signaling rates, and were more likely to have an immediate association with foraging. Both worker vibrators and drone vibrators contacted drones of all ages as they moved through the nest. However, drone vibrators contacted drones at higher rates, contacted slightly, but significantly younger drones, and were more likely to engage in trophallaxis and grooming with drones, in addition to vibrating them. Taken together, our results suggest that tiny proportions of workers belonging to separate, but overlapping age groups provide most of the care received by adult drones, and that drone vibrators comprise a subset of signalers within a colony that have an increased tendency to contact and interact with drones. Vibratory, tactile signals are involved in colony reproductive and movement decisions in a number of species of bees, wasps and ants, and may provide valuable tools for investigating caste interactions in many insect societies.  相似文献   

6.
7.
There is an age-related division of labor in the honey bee colony that is regulated by juvenile hormone. After completing metamorphosis, young workers have low titers of juvenile hormone and spend the first several weeks of their adult lives performing tasks within the hive. Older workers, approximately 3 weeks of age, have high titers of juvenile hormone and forage outside the hive for nectar and pollen. We have previously reported that changes in the volume of the mushroom bodies of the honey bee brain are temporally associated with the performance of foraging. The neuropil of the mushroom bodies is increased in volume, whereas the volume occupied by the somata of the Kenyon cells is significantly decreased in foragers relative to younger workers. To study the effect of flight experience and juvenile hormone on these changes within the mushroom bodies, young worker bees were treated with the juvenile hormone analog methoprene but a subset was prevented from foraging (big back bees). Stereological volume estimates revealed that, regardless of foraging experience, bees treated with methoprene had a significantly larger volume of neuropil in the mushroom bodies and a significantly smaller Kenyon cell somal region volume than did 1-day-old bees. The bees treated with methoprene did not differ on these volume estimates from untreated foragers (presumed to have high endogenous levels of juvenile hormone) of the same age sampled from the same colony. Bees prevented from flying and foraging nonetheless received visual stimulation as they gathered at the hive entrance. These results, coupled with a subregional analysis of the neuropil, suggest a potentially important role of visual stimulation, possibly interacting with juvenile hormone, as an organizer of the mushroom bodies. In an independent study, the brains of worker bees in which the transition to foraging was delayed (overaged nurse bees) were also studied. The mushroom bodies of overaged nurse bees had a Kenyon cell somal region volume typical of normal aged nurse bees. However, they displayed a significantly expanded neuropil relative to normal aged nurse bees. Analysis of the big back bees demonstrates that certain aspects of adult brain plasticity associated with foraging can be displayed by worker bees treated with methoprene independent of foraging experience. Analysis of the over-aged nurse bees suggests that the post-metamorphic expansion of the neuropil of the mushroom bodies of worker honey bees is not a result of foraging experience. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
9.
Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.  相似文献   

10.
Normally, worker honey bees (Apis mellifera) only lay eggs when their colony is queenless. When a queen is present, worker egg-laying is controlled by mutual “policing” behavior in which any rare worker-laid eggs are eaten by other workers. However, an extremely rare behavioral phenotype arises in which workers develop functional ovaries and lay large numbers of eggs despite the presence of the queen. In this study, microsatellite analysis was used to determine the maternity of drones produced in such a colony under various conditions. One subfamily was found to account for about 90% of drone progeny, with the remainder being laid by other subfamilies or the queen. No evidence of queen policing was found. After a one-month period of extreme worker oviposition in spring, the colony studied reverted to normal behavior and showed no signs of worker oviposition. However, upon removal of the queen, workers commenced oviposition very quickly. Significantly, the subfamily that laid eggs when the queen was present did not contribute to the drone production when the colony was queenless. However, another subfamily contributed a disproportionately large number of drones. The frequency of worker oviposition appears to be determined by opposing selective forces. Individual bees benefit from personal reproduction, whereas other bees and the colony are disadvantaged by it. Thus a behavioral polymorphism can be maintained in the population in which some workers can escape worker policing, with balancing selection at the colony level to detect and eliminate these mutations.  相似文献   

11.
Studies on the role of juvenile hormone (JH) in adult social Hymenoptera have focused on the regulation of two fundamental aspects of colony organization: reproductive division of labor between queens and workers and age-related division of labor among workers. JH acts as a gonadotropin in the primitively eusocial wasp and bumble bee species studied, and may also play this role in the advanced eusocial fire ants. However, there is no evidence that JH acts as a traditional gonadotropin in the advanced eusocial honey bee or in the few other ant species that have recently begun to be studied. The role of JH in age-related division of labor has been most thoroughly examined in honey bees. Results of these studies demonstrate that JH acts as a “behavioral pacemaker,” influencing how fast a worker grows up and makes the transition from nest activities to foraging. Hypotheses concerning the evolutionary relationship between the two functions of JH in adult eusocial Hymenoptera are discussed. Arch. Insect Biochem. Physiol. 35:559–583, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
In some group-living organisms, labor is divided among individuals. This allocation to particular tasks is frequently stable and predicted by individual physiology. Social insects are excellent model organisms in which to investigate the interplay between physiology and individual behavior, as division of labor is an important feature within colonies, and individual physiology varies among the highly related individuals of the colony. Previous studies have investigated what factors are important in determining how likely an individual is, compared to nestmates, to perform certain tasks. One such task is foraging. Corpulence (i.e., percent lipid) has been shown to determine foraging propensity in honey bees and ants, with leaner individuals being more likely to be foragers. Is this a general trend across all social insects? Here we report data analyzing the individual physiology, specifically the percent lipid, of worker bumble bees (Bombus impatiens) from whom we also analyze behavioral task data. Bumble bees are also unusual among the social bees in that workers may vary widely in size. Surprisingly we find that, unlike other social insects, percent lipid is not associated with task propensity. Rather, body size closely predicts individual relative lipid stores, with smaller worker bees being allometrically fatter than larger worker bees.  相似文献   

13.
《Journal of Asia》2014,17(4):911-916
In a honey bee colony, worker bees rear a new queen by providing her with a larger cell in which to develop and a large amount of richer food (royal jelly). Royal jelly and worker jelly (fed to developing worker larvae) differ in terms of sugar, vitamin, protein and nucleotide composition. Here we examined whether workers attending queen and worker larvae are separate specialized sub-castes of the nurse bees. We collected nurse bees attending queen larvae (AQL) and worker larvae (AWL) and compared gene expression profiles of hypopharyngeal gland tissues, using Solexa/Illumina digital gene expression tag profiling (DGE). Significant differences in gene expression were found that included a disproportionate number of genes involved in glandular secretion and royal jelly synthesis. However behavioral observations showed that these were not two entirely distinct populations. Nurse workers were observed attending both worker larvae and queen larvae, and there was no evidence of a specialized group of workers that preferentially or exclusively attended developing queens. Nevertheless, AQL attended larvae more frequently compared to AWL, suggesting that nurses sampled attending queen larvae may have been the most active nurses. This study serves as another example of the relationship between differences in gene expression and behavioral specialisation in honey bees.  相似文献   

14.
Age-related division of labor in honeybees is associated with plasticity in circadian rhythms. Young nest bees care for brood around the clock with no circadian rhythms while older foragers have strong circadian rhythms that are used for sun compass navigation and for timing visits to flowers. Since juvenile hormone (JH) is involved in the coordination of physiological and behavioral processes underlying age-related division of labor in honey bees, we tested the hypothesis that JH influences the ontogeny of circadian rhythms and other clock parameters in young worker bees. Treatments with the JH analog methoprene or allatectomy did not influence the onset of rhythmicity, overall locomotor activity, or the free-running period of rhythmic locomotor behavior. There were, however, significant differences in the onset of rhythmicity, overall locomotor activity, and longevity between bees from different source colonies, suggesting that there is significant genetic variation for these traits. Our results suggest that JH does not coordinate all aspects of division of labor in bees and that coordination of task performance with circadian rhythms is probably mediated by other regulatory systems.  相似文献   

15.
Honey bee division of labor is characterized by temporal polyethism, in which young workers remain in the hive and perform tasks there, whereas old workers perform more risky outside tasks, mainly foraging. We present a model of honey bee division of labor based on (1) an intrinsic process of behavioral development and (2) inhibition of development through social interactions among the workers in a colony. The model shows that these two processes can explain the main features of honey bee temporal polyethism: the correlation between age and task performance; the age at which a worker first forages and how this age varies among hives; the balanced allocation of workers to hive tasks and foraging; the recovery of a colony from demographic perturbations; and the differentiation of workers into different behavioral roles. The model provides a baseline picture of individual and colony behavior that can serve as the basis for studies of more fine-grained regulation of division of labor.  相似文献   

16.
17.
All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.  相似文献   

18.
Hormone analyses and exocrine gland measurements were made to probe for physiological correlates of division of labor among similarly aged adult worker honey bees (Apis mellifera L.). Middle-age bees (ca. 2 weeks old) performing different tasks showed significant differences in both juvenile hormone (JH) biosynthesis rates and hemolymph titers; guards and undertakers had high JH, and wax producers and food storers, low JH. Guards and undertakers had similar hormone levels to foragers, even though they were 10 days younger than foragers. No differences in JH were detected among young bees (1-week-old queen attendants and nurses) or older bees (3–4 week-old pollen foragers, non-pollen foragers, and soldiers). Hypopharyngeal gland size was inversely correlated with worker age and rate of JH biosynthesis, but soldiers had significantly larger hypopharyngeal glands than did foragers, despite their similar age and JH level. Results from soldiers indicate that exocrine gland development is not always linked with age-related behavior and endocrine development; they also support the recent claim that soldiers constitute a group of older bees that are distinct from foragers. Hormonal analyses indicate that the current model of JH's role in honey bee division of labor needs to be expanded because high levels of JH are associated with several other tasks besides foraging. JH may be involved in the regulation of division of labor among similarly aged workers in addition to its role in age-related division of labor.Abbreviations JH Juvenile hormone - RIA radioimmunoassay - CA corpora allata - HPLC high performance liquid chromatography - TLC thin layer chromatography  相似文献   

19.
Daniel Münch  Gro V. Amdam 《FEBS letters》2010,584(12):2496-2503
As in all advanced insect societies, colony-organization in honey bees emerges through a structured division of labor between essentially sterile helpers called workers. Worker bees are sisters that conduct all social tasks except for egg-laying, for example nursing brood and foraging for food. Curiously, aging progresses slowly in workers that engage in nursing and even slower when bees postpone nursing during unfavorable periods. We, therefore, seek to understand how senescence can emerge as a function of social task performance. The alternative utilization of a common yolk precursor protein (vitellogenin) in nursing and somatic maintenance can link behavior and aging plasticity in worker bees. Beneficial effects of vitellogenin may also be mediated by inhibitory action on juvenile hormone and insulin-like signaling.  相似文献   

20.
After confirming that worker honey bees (Apis mellifera) can revert from foraging to brood care, we determined whether juvenile hormone (JH) mediates this form of plasticity in behavioral development and whether worker age and genotype influence the probability of its expression. Measurements of JH titers support the hypothesis that plasticity in honey bee behavioral development is a consequence of modulation of JH by extrinsic factors. Observations of individually marked bees in a colony composed of two phenotypically distinguishable subfamilies revealed that the likelihood of undergoing behavioral reversion was influenced by worker age but not by worker genotype. The effect of worker age on reversion is consistent with a previously formulated model for the regulation of age polyethism in honey bees that predicts that workers of different ages have different response thresholds for task-associated stimuli. The lack of a genotypic effect on reversion is in contrast to results for other forms of behavioral plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号