首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《新西兰生态学杂志》2011,27(2):107-113
During a comprehensive survey in 1999, 2000 and 2001, we investigated the number of breeding yellow-eyed penguin pairs on Stewart Island, where cats are present, and on adjacent cat-free islands. We found 79 pairs of yellow-eyed penguin breeding in 19 discrete locations on Stewart Island (4.2 pairs per location), and 99 pairs breeding in 10 discrete locations on all cat-free islands (9.9 pairs per location). Large-scale humaninduced habitat modifications have not occurred on Stewart Island, nor on any of its adjacent offshore islands. While the extensive coastline of Stewart Island (673 km) offers potentially large areas of breeding habitat for penguins, the highest number of breeding pairs were found on the smaller, predator-free Codfish Island (25 km coastline), where a total of 61 breeding pairs were recorded. On Stewart Island, where mustelids do not occur, only feral cats can pose a serious threat to penguin offspring. Results from this study suggest that feral cats may prey on yellow-eyed penguins on Stewart Island. Further work is necessary to investigate whether the observed low numbers of yellow-eyed penguins on Stewart Island are caused by feral cat predation. If so, it may be possible to develop appropriate measures to protect this penguin species from a population decline.  相似文献   

2.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

3.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

4.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

5.
Christopher Jones 《Oikos》2003,102(1):57-66
New Zealand's native avifauna is threatened by introduced mammalian predators. Native species are often not the primary prey of these predators, which depend on introduced mice and rabbits as their primary food source. Theoretical models predict that predation risk for a subsidiary, or "secondary" prey species is inversely proportional to its population size. This prediction was tested by a quasi-natural experiment in which four different sized prey "colonies" were constructed at four existing sooty shearwater breeding sites. Domestic hens' eggs were placed in shearwater burrows immediately following the shearwater breeding season and egg predation rates monitored at five, ten and fifteen days. Treatments were switched between sites and the experiment run for a second time after a two-week stand-down period. The net effect of increasing colony size was to lower individual risk of predation. The larger number of individuals present served to effectively "buffer," or dilute, per-capita predation risk from predators whose numbers are fixed by extraneous factors: chiefly the abundance of their primary prey. Although eggs were removed more slowly from smaller colonies than from larger ones, each loss had a greater per-capita effect on individual mortality risk. The inverse density dependent relationship found between colony size and predation risk implies that predator population dynamics are largely independent of secondary prey numbers. Abundant introduced predators can therefore easily drive a small secondary prey population to extinction. Control of primary prey populations may be an important management tool in these circumstances.  相似文献   

6.
Breeding success of Cape petrels at Nelson Island (South Shetland Islands) in 1991/1992 averaged 29%. Predation by skuas accounted for 76% of all nesting failures. Direct attacks prevailed over opportunistic predation. Intensity of observer disturbance alone could not account for the inter-colony variation in predation rate, which tended to increase with colony size, presence of nearby breeding skuas and local availability of other prey species (penguins). Predation was significantly lower on nests that could be attacked only, or more easily, from the air and nests with close neighbours. Selective predation on nests in which relatively narrower eggs were laid was independent of nest-site characteristics and laying date, suggesting an effect of parental age/experience on breeding success through antipredator behaviour. Development of oil-spitting behaviour in growing chicks balanced the parental attendance and effort in nest defence, which declined as chick age increased. Increased predation on lighter but not smaller chicks may reflect the lower ability of such chicks to defend themselves by spitting stomach oil. Seasonal variations of predation rate on Cape petrel nests did not result from predator swamping by numbers of simultaneously active nests, but rather reflected temporal availability of alternative prey. Success of all phases of nesting declined with later laying date. Received: 15 December 1997 / Accepted: 11 April 1998  相似文献   

7.
A model for two competing prey species and one predator is formulated in which three essential nutrients can limit growth of all populations. Prey take up dissolved nutrients and predators ingest prey, assimilating a portion of ingested nutrients and recycling or respiring the balance. For all species, the nutrient contents of individuals vary and growth is coupled to increasing content of the limiting nutrient. This model was parameterized to describe a flagellate preying on two bacterial species, with carbon (C), nitrogen (N), and phosphorus (P) as nutrients. Parameters were chosen so that the two prey species would stably coexist without predators under some nutrient supply conditions. Using numerical simulations, the long-term outcomes of competition and predation were explored for a gradient of N:P supply ratios, varying C supply, and varying preference of the predator for the two prey. Coexistence and competitive exclusion both occurred under some conditions of nutrient supply and predator preference. As in simpler models of competition and predation these outcomes were largely governed by apparent competition mediated by the predator, and resource competition for nutrients whose effective supply was partly governed by nutrient recycling also mediated by the predator. For relatively small regions of parameter space, more complex outcomes with multiple attractors or three-species limit cycles occurred. The multiple constraints posed by multiple nutrients held the amplitudes of these cycles in check, limiting the influence of complex dynamics on competitive outcomes for the parameter ranges explored.  相似文献   

8.
1. Rabbit calicivirus disease (RCD; also known as rabbit haemorrhagic disease) has been introduced recently as a biocontrol agent for rabbits in Australia. The consequences for fox populations that use rabbits as primary prey, for populations of alternative native prey, and for pastures, were examined using a model for rabbit- and fox-prone areas of semi-arid southern Australia.
2. Existing data were used to quantify the interactions of foxes, rabbits and pasture. A generic model for predation on native herbivores was constructed by modifying the density-dependent (Type III) functional response of foxes to rabbits to a depensatory (Type II) response that is appropriate for alternative prey. Similar dependence on pasture biomass was assumed for the dynamics of both rabbits and alternative prey in order to identify clearly the consequences of differing predation. In the absence of quantitative data for Australian conditions, the epidemiology of RCD was simulated empirically to mimic a range of potential patterns of occurrence.
3. For semi-arid Australia the model predicts that as the frequency and intensity of RCD epizootics increases: (i) the mean abundance of rabbits will decline, as will the frequency of eruptions of rabbits; (ii) there may be little increase in mean pasture biomass and a small decrease in periods of very low pasture biomass when competition between herbivores is most intense; (iii) the mean abundance of foxes will decline; (iv) there will be a reduced frequency of occasions when rabbit density is low but fox density is high due to a lag in the response of predator populations; and (v) there is potential for an increase in the mean abundance of alternative prey and in the proportion of time their density exceeds a threshold comparable to that currently required for eruptions of rabbits.  相似文献   

9.
This radio-tracking study reports the daily activity rhythms in autumn and spring of 11 stoats (Mustela erminea) (9 male, 2 female), 20 ferrets (M.furo) (8 m, 12 f) and 11 feral house cats (Felis catus) (7 m, 4 f) resident on coastal grassland, Otago Peninsula, New Zealand. Activity rhythms differed markedly amongst individual stoats in autumn, but little amongst individual cats and ferrets in either season. Stoats were equally active day and night in autumn, but were more active at day than at night in spring. Cats showed moderate day activity, but were mainly active at night in both seasons. Ferrets showed low activity during daylight in autumn and were entirely nocturnal in spring. Overall, stoats were more active during daylight than cats or ferrets; and cats were more active during daylight than ferrets. Therefore, cats and especially stoats may pose the main predation threat to diurnal native species in New Zealand. Effective biological control of rabbits (Oryctolagus cuniculus) may effect the absolute abundance and daily activity of the predators, so is impossible to predict the overall impact of predation on diurnal and nocturnal native species.  相似文献   

10.
John L. Quinn  Will Cresswell 《Oikos》2012,121(8):1328-1334
Theory and empirical evidence suggest that predator activity makes prey more wary and less vulnerable to predation. However if at least some prey in the population are energetically or spatially constrained, then predators may eventually increase local prey vulnerability because of the cumulative costs of anti‐predation behaviour. We tested whether repeated attacks by a predator might increase prey vulnerability in a system where redshanks on a saltmarsh are attacked regularly by sparrowhawks from adjacent woodland. Cumulative attack number led to a reduction in redshank numbers and flock size (but had no effect on how close redshanks fed to predator‐concealing cover) because some redshanks moved to safer but less profitable habitats, leaving smaller flocks on the saltmarsh. This effect held even though numbers of redshank on the saltmarsh increased with time of day. As a result of the change in flock size, predicted attack‐success increased up to 1.6‐fold for the sparrowhawk, while individual risk of capture for the redshank increased up to 4.5‐fold among those individuals remaining on the saltmarsh. The effect did not arise simply because hawks were more likely to attack smaller flocks because attack rate was not dependent on flock size or abundance. Our data demonstrate that when some individual prey are constrained in their ability to feed on alternative, safer foraging sites, their vulnerability to predation increases as predator attacks accumulate, although those, presumably better quality individuals that leave the immediate risky area will have lower vulnerability, so that the mean vulnerability across the entire population may not have changed substantially. This suggests that the selective benefits of multiple low‐cost attacks by predators on prey could potentially lead to 1) locally heightened trait‐mediated interactions, 2) locally reduced interference among competing predators, and 3) the evolution of active prey manipulation by predators.  相似文献   

11.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

12.
Invasive species are a regional and global threat to biological diversity. In order to evaluate an invasive predator species’ potential to harm populations of native prey species, it is critical to evaluate the behavioral responses of all life stages of the native prey species to the novel predator. The invasion of the African clawed frog (Xenopus laevis) into southern California provides an opportunity to evaluate the predation risk and behavioral responses of native amphibians. We performed predation trials and explored prey behavioral responses to determine how this invasive predator may impact native amphibian populations using Pacific chorus frogs (Pseudacris regilla) as a representative native California prey species. We found that X. laevis will readily prey upon larval and adult life stages of P. regilla. Behavior trials indicated that both larval and adult P. regilla exhibit prey response behaviors and will spatially avoid the novel invasive predator. The results suggest that native anurans may have a redundant predator response in both the larval and adult life stages, which could reduce the predatory impact of X. laevis but also drive emigration of native amphibians from invaded habitat.  相似文献   

13.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics.  相似文献   

14.
Abstract

The identification of introduced and native predators is important for many conservation studies within New Zealand. Carcasses of Hutton's shearwaters were collected over three field seasons, and where predation was probable, the bodies were autopsied. Paired bites identified stoats as the principal predator of Hutton's shearwater, but also revealed that a feral cat was present within the colony. Stoats killed their prey with a bite to the back of the neck or head, and commenced feeding on the neck or head. Despite the limited number of cat‐killed birds, cats appeared to feed on Hutton's shearwaters differently from stoats, starting on the breast muscles. Harriers and kea left sign that allowed birds killed or scavenged by these native birds to be distinguished from those killed by stoats or cats.  相似文献   

15.
StoatsMustela erminea Linnaeus, 1758 and weaselsMustela nivalis Linnaeus, 1766 exploit the same array of prey species at different frequencies according to body size. The rabbitOryctolagus cuniculus, which typically is the dominant prey for stoats in temperate parts of Europe, is absent in Denmark. The present study based on gastrointestinal tract contents examines the food habits of sympatric stoats (n=112) and weasels (n=132) from Denmark. Rodents were the most important prey group for both stoats and weasels, constituting 77% and 84% of their diet respectively, expressed as frequency of occurrence. No differences were detected in the proportions of major prey groups between sexes within species, but between species the diets differed. Stoats ate birds and birds’ eggs more often than weasels did, while weasels ate more insectivores. Stoats ate more oftenMicrotus voles and water voleArvicola terrestris than weasels did, while weasels ate more bank voleClethrionomys glareolus and moleTalpa europaea. There was a larger dietary overlap between sympatric stoats and weasels in Denmark than in other dietary studies in areas where rabbits were available.  相似文献   

16.
Whether predators can limit their prey has been a topic of scientific debate for decades. Traditionally it was believed that predators take only wounded, sick, old or otherwise low-quality individuals, and thus have little impact on prey populations. However, there is increasing evidence that, at least under certain circumstances, vertebrate predators may indeed limit prey numbers. This potential role of predators as limiting factors of prey populations has created conflicts between predators and human hunters, because the hunters may see predators as competitors for the same resources. A particularly acute conflict has emerged over the past few decades between gamebird hunters and birds of prey in Europe. As a part of a European-wide research project, we reviewed literature on the relationships between birds of prey and gamebirds. We start by analysing available data on the diets of 52 European raptor and owl species. There are some 32 species, mostly specialist predators feeding on small mammals, small passerine birds or insects, which never or very rarely include game animals (e.g. hares, rabbits, gamebirds) in their diet. A second group (20 species) consists of medium-sized and large raptors which prey on game, but for which the proportion in the diet varies temporally and spatially. Only three raptor species can have rather large proportions of gamebirds in their diet, and another seven species may utilise gamebirds locally to a great extent. We point out that the percentage of a given prey species in the diet of an avian predator does not necessarily reflect the impact of that predator on densities of prey populations. Next, we summarise available data on the numerical responses of avian predators to changing gamebird numbers. In half of these studies, no numerical response was found, while in the remainder a response was detected such that either raptor density or breeding success increased with density of gamebirds. Data on the functional responses of raptors were scarce. Most studies of the interaction between raptors and gamebird populations give some estimate of the predation rate (per cent of prey population taken by predator), but less often do they evaluate the subsequent reduction in the pre-harvest population or the potential limiting effect on breeding numbers. The few existing studies indicate that, under certain conditions, raptor predation may limit gamebird populations and reduce gamebird harvests. However, the number and extent of such studies are too modest to draw firm conclusions. Furthermore, their geographical bias to northern Europe, where predator-prey communities are typically simpler than in the south, precludes extrapolation to more diverse southern European ecosystems. There is an urgent need to develop further studies, particularly in southern Europe, to determine the functional and numerical responses of raptors to gamebird populations in species and environments other than those already evaluated in existing studies. Furthermore, additional field experiments are needed in which raptor and possibly also mammalian predator numbers are manipulated on a sufficiently large spatial and temporal scale. Other aspects that have been little studied are the role of predation by the non-breeding part of the raptor population, or floaters, on the breeding success and survival of gamebirds, as well as the effect of intra-guild predation. Finally there is a need for further research on practical methods to reduce raptor predation on gamebirds and thus reduce conflict between raptor conservation and gamebird management.  相似文献   

17.
Over evolutionary time, predator-prey interactions have shaped and constrained functional and behavioral traits of piscivorous fishes. The endangered Colorado Pikeminnow Ptychocheilus lucius, a large endemic piscivore of the Colorado River Basin, encounters a substantially altered prey base that differs in behaviors and morphologies compared to the historical suite of native prey. To assess physical limitations of Colorado Pikeminnow predation, we conducted a feeding experiment with two species of nonnative prey (spined and despined Channel Catfish Ictalurus punctatus and Red Shiner Cyprinella lutrensis) and quantified scaling of cranial morphology in this predator. In our predation experiments, Colorado Pikeminnow (215–312 mm total length) consumed both spined and despined Channel Catfish as well as Red Shiner but only consumed prey less than 20% of the predator’s total length. Previous feeding trials using smaller Colorado Pikeminnow, with native and nonnative prey species, indicated they consumed prey up to 35% of their total length, suggesting relative prey size limits may decrease as this predator grows. Morphological measurements also suggested relative prey size suitability may decrease as Colorado Pikeminnow become larger, with head depth and width demonstrating isometric scaling at small sizes and shifting to negative allometry as fish get larger. Together, these data suggest an ontogenetic shift in the head morphology of Colorado Pikeminnow may decrease the relative size of prey available to these predators. In severely altered systems, understanding trophic characteristics that limit overall predator resource availability will be critical for conservation of piscivorous fishes.  相似文献   

18.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

19.
1. Invasions of top predators may have strong cascading effects in ecosystems affecting both prey species abundance and lower trophic levels. A recently discussed factor that may enhance species invasion is climate change and in this context, we studied the effects of an invasion of northern pike into a subarctic lake ecosystem formerly inhabited by the native top predator Arctic char and its prey fish, ninespined stickleback. 2. Our study demonstrated a strong change in fish community composition from a system with Arctic char as top predator and high densities of sticklebacks to a system with northern pike as top predator and very low densities of sticklebacks. A combination of both predation and competition from pike is the likely cause of the extinction of char. 3. The change in top predator species also cascaded down to primary consumers as both zooplankton and predator‐sensitive macroinvertebrates increased in abundance. 4. Although the pike invasion coincided with increasing summer temperatures in the study area we have no conclusive evidence that the temperature increase is the causal mechanism behind the pike invasion. But still, our study provides possible effects of future pike invasions in mountain lakes related to climate change. We suggest that future pike invasions will have strong effects in lake ecosystems, both by replacing native top consumers and through cascading effects on lower trophic levels.  相似文献   

20.
ABSTRACT Apparent competition (i.e., a mutually negative indient rect interaction between prey species through shared predation) arises when predator abundance or foraging effort increases with spetotal prey availability. We review and formalize several patch-use models from which we derive predictions for how the degree of coupling (from the predators' perspective) between nesting guilds (defined as species nesting within a vegetation stratum) affects the outcome of shared predation. We then determine which model best applies to nest predation on woodland songbirds and artificial nests by a natural population of raccoons. Using artificial nests, we showed that increasing the density of nests placed either in shrubs or on the ground increased overall predation (i.e., proportion of nests) on both types. We also tested for apparent competition between American robin and wood thrush, two coexisting woodland songbirds that commonly nest within the shrub stratum. Nest predation increased for wood thrushes but not robins as the combined density of robin and thrush nests within two individual substrate types, Lonicera and Rhamnus, increased. Thus, we documented apparent competition both within and among nesting guilds. We discuss the possible relevance of this interaction in determining species diversity, particularly in the light of increasing generalist nest predators through anthropogenically driven changes in human-altered landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号