首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ornithine urea cycle, polyamine synthesis, nitric oxide synthesis and metabolism of arginine to putrescine have been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Neither parasite had a detectable arginine deiminase/dihydrolase pathway nor a functional ornithine urea cycle. Nitric oxide synthase was present in central and peripheral nerves, but was not detected in whole parasite homogenates. Both arginase (E.C. 3.5.3.1) and agmatinase (E.C. 3.5.3.11) activities were present in both species. Arginase did not require added Mn2+ and had an optimal pH of 8.5. Polyamine metabolism differed in the two species and from that in mammals. Ornithine decarboxylase (E.C. 4.1.1.17) was present in both parasites, but no arginine decarboxylase (E.C. 4.1.1.19) activity was detected in T. circumcincta. The flexibility of synthesis of putrescine in H. contortus may make this pathway less useful as a target for parasite control than in T. circumcincta, in which only the ornithine decarboxylase pathway was detected.  相似文献   

2.
Acetate uptake by strains of Synechococcus and Aphanocapsa in short experiments required light, and was strongly inhibited by m-dichlorocarbonyl cyanide phenylhydrazone and dichlorophenyl dimethyl urea. Acetate carbon was distributed in amino acids and in the acyl portion of lipids in the same way as during growth experiments when CO2 was available, but the reduced incorporation in the absence of CO2 was primarily into the lipid fraction. An apparent K m for uptake by Synechococcus and for Aphanocapsa 6308 of 20 and 180 M at pH 7.4 was obtained; corresponding V max values were 6 and 11 nmol x min-1 x mg protein-1. Uptake with Synechococcus was affected by pH, with affinity decreased and maximal rate increase with rising pH. Acetate uptake was not affected by propionate or butyrate when both were added at the same time, but a light and concentration dependent inhibition developed if suspensions were preincubated with propionate. Acetate carbon moved rapidly into acid insoluble material, but after 10–15 s 75% or more of the recovered intracellular counts were in acetyl CoA. Counts in this compound were reduced by preincubation with propionate.Kinetic measurements of acetyl CoA synthetase in fractionated cell extracts gave values for K m of about 50 M for acetate, 5 mM for propionate, 100 M for CoA and 0.38 mM for ATP. The internal pool of free CoA was measured to be about 20 M, and was reduced by preincubation with propionate. This suggests that the activity of CoA-mediated reactions may be regulated by the availability of this cofactor.Abbreviations Used CCCP m-Dichlorocarbonyl cyanide phenyl hydrazone - DCMU dichlorophenyl dimethyl urea - TCA trichloroacetic acid - Tris trishydroxymethyl amino methane - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid  相似文献   

3.
Summary The ventricle of the mussel Geukensia demissa is inhibited by 5-hydroxytryptamine and excited by the molluscan neuropeptide FMRFamide. Supra-threshold doses of amide result in marked positive chronotropy and inotropy within 5–15 s. 5-Hydroxytryptamine at 10-8 M produces diastolic arrest within 10 s. A 1-min exposure to FMRFamide (5 · 10-8 M) results in a small increase in the cytoplasmic levels of adenosine 3,5-cyclic monophosphate; shorter or longer exposures have no effect. The cAMP content of ventricles incubated in 5 · 10-8 M 5-hydroxytryptamine for 1 min decreases by 2.3 pmol/mg protein; longer or shorter incubations have no effect. Treatment with forskolin results in 3-or 4-fold increases in adenosine 3,5-cyclic monophosphate, but forskolin has no effect on the mechanical activity of the ventricle. The levels of inositol monophosphate, inositol 1,4-diphosphate, and inositol 1,4,5-triphosphate in tissues exposed to 5-hydroxytryptamine are not different from levels in control tissues. FMRFamide decreases the levels of these phosphoinositides by 50% or more. Lower concentrations of phorbol 12,13-diacetate (10-8 to 10-7 M) and phorbol 12-myristate, 13-acetate (10-6 M) cause positive chronotropy in the isolated ventricle; higher concentrations induce systolic arrest. These results suggest that the effects of 5HT on the ventricle are not mediated by adenosine 3,5-cyclic monophosphate or inositol 1,4,5-triphosphate. The effects of FMRFamide may involve a decrease in inositol 1,4,5-triphosphate. The effects of amide may involve a decrease in inositol 1,4,5-triphosphate. The response of the ventricles to phorbol esters suggest that protein kinase C may be involved in the regulation of cardiac contractility.Abbreviations cAMP adenosine 3,5-cyclic monophosphate - DMA dimethylformamide - DMSO dimethylsulfoxide - FMRFamide Phenylalanyl-methionyl-arginyl-phenylalanylamide - 5HT 5-hydroxytryptamine - IP inositol monophosphate - IP2 inositol 1,4-diphosphate - IP3 inositol 1,4,5-triphosphate - PDA phorbol 12,13-diacetate - PMA phorbol 12-myristate, 13-acetate - SW sea water Present address: MSU; E.M. Center, Memphis, TN 38152, USA  相似文献   

4.
I. Laczkó  K. Barabás 《Planta》1981,153(4):312-316
We have studied the evolution of hydrogen by photobleached filaments of the heterocystous bluegreen alga Anabaena cylindrica. The photobleached cells became orange-yellow due to the heavy accumulation of carotenoids. We found that the yellow filaments produced much larger amounts of hydrogen than the normal, green ones, while the nitrogenase activity responsible for hydrogen evolution increased to a lesser extent. We suggest that a reversible hydrogenase activity induced in photobleached filaments is responsible for the excess amount of hydrogen. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibits the hydrogen evolution of the yellow filaments which produce much more oxygen and fix less CO2 than the green filaments. Therefore we consider the water to be a possible electron source for this hydrogenase. The low efficiency of light energy conversion (0.3%) in nitrogenase-catalyzed H2 evolution (Laczkó, 1980 Z. Pflanzenphysiol. 100, 241–245) is increased to 1.5–2% by the appearance of the reversible hydrogenase activity.Abbreviations Chl chlorophyll - Car carotenoids - Phy phycocyanin - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - PSI photosystem I - PSII photosystem II  相似文献   

5.
Protein kinase C inhibitors, such a calphostin C, abolish the transient nature of pheromone-induced rapid inositol 1,4,5-triphosphate (IP3) responses, suggesting that pheromone signalling is terminated by phosphorylation of specific proteins. Challenging antennal preparations fromHeliothis virescens with species-specific pheromones in the presence of [32P]--ATP led to a rapid, stimulus-dependent incorporation of32Pi into antennal proteins. Pheromone-induced phosphorylation was completely abolished by a blockade of protein kinase C. Electrophoretic analysis revealed that upon stimulation with a pheromone blend two polypeptide bands were labelled; stimulation solely with the major compound (Z-11-hexadecenal) resulted in only a single labelled band. The data indicate that pheromones cause phosphorylation of specific antennal proteins which may be receptors for pheromones.Abbreviations ATP adenosine 5-triphosphate - DMSO dimethylsulphoxide - DPM disintigrations per minute - DTT dithiothreitol - EDTA ethylenediaminetetra-acetic acid - EGTA ethyleneglycol-bis(-aminoethyl ether)N,N,N,N-tetra-acetic acid - GTP guanosine 5-triphosphate - IP3 inositol 1,4,5-trisphosphate - MOPS 3-(N-morpholino)propanesulphinic acid - Pi inorganic phosphate - PDBu phorbol-dibutyrate - SDS sodium dodecyl sulphate  相似文献   

6.
The marine macroalgaUlva sp. can take up HCO 3 - via a process which chemically resembles that of anion exchange in red blood cells (Drechsler et al. 1993, Planta191, 34–40). In this work we explore the possibility that high-pK amino-acid residues could be functionally involved in the binding/transport of HCO 3 - . It was found that the specific arginyl-reacting agents phenylglyoxal and 2,3-butanedione inhibited photosynthesis ofUlva competitively with inorganic carbon at pH 8.2–8.4 (which is close to the pH of normal seawater), where HCO 3 - was the predominant inorganic carbon form taken up. The inhibition by phenylglyoxal was irreversible at 32°C and high pH values, while that of butanedione became irreversible in the presence of borate. These interactions, as well as the protection of the irreversible phenylglyoxal-inhibition by inorganic carbon and by the membrane-impermeant agents 4,4-diisothiocyanostilbene 2,2-disulfonate and 4,4-dinitrostilbene-2,2-disulfonate indicate that arginine (and possibly also lysine) are involved in the HCO 3 - uptake process, probably at the plasmalemma level. The photosynthetic affinity ofUlva to external inorganic carbon gradually decreased with increasing pH from 8.2 to 10.5, and this decrease parallels the decline in protonation of amino acids with a pK of around 10. Based on this information, as well as the inhibition studies, it is suggested that arginine and lysine residues are essential proteinaceous constituents involved in anionic inorganic carbon (HCO 3 - and possibly also CO 3 2- ) uptake into theUlva cells.Abbreviations AE1 anion exchanger 1 (of red blood cells) - BD 2,3-butanedione - CA carbonic anhydrase - CI inorganic carbon - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - DNDS 4,4-dinitrostilbene-2,2-disulfonate - PG phenylglyoxal This paper is in partial fulfillment of a Ph.D. study by R. Sharkia. Supported by the Israel Academy of Sciences, grant 441/93 (to S.B.), and by the Fund for Encouragement of Research, Histadrut, Israel (to R.S.).  相似文献   

7.
Important progress in arginine metabolism includes the discovery of widespread expression of two isoforms of arginase, arginase I and II, not only in hepatic cells but also in non-hepatic cells, and the formation of nitric oxide, a widely distributed signal-transducing molecule, from arginine by nitric oxide synthase. Possible physiological roles of arginase may therefore include regulation of nitric oxide synthesis through arginine availability for nitric oxide synthase. In this paper, arginase was investigated in the submandibular, sublingual, and parotid glands of rat, mouse, guinea pig, and rabbit. From their arginase contents, the salivary glands of these species were divided into two groups. Variable levels of arginase activity were detected in the salivary glands of mouse and rat. However, salivary glands of rabbit and guinea pig had almost no arginase activity. The presence of nitric oxide synthase has been reported in all the salivary glands used in this study. Therefore, one of the important findings was the presence of species specificity in the co-localization of arginase and nitric oxide synthase in the salivary glands of the four species. The highest specific activity of arginase was found in mouse parotid gland. In rat, considerable arginase activity was detected in all three glands, at 3.6–7.3% of that in rat liver. In rat submandibular gland, arginase was detected in both cytosolic and particulate fractions. In addition, arginase was detected in isolated acinar cells, but not in duct cells. Experiments on the intracellular distribution and the effects of the arginase inhibitors ornithine and N-hydroxy-L-arginine (NOHA), suggested the presence of both arginase I and arginase II in rat submandibular gland.Abbreviations cGMP cyclic guanosine 3,5-monophosphate - NO nitric oxide - NOHA N-hydroxy-L-arginine - NOS nitric oxide synthase Communicated by I.D. Hume  相似文献   

8.
The cyanobacterium Anacystis nidulans contained levels of inorganic pyrophosphate (PP) which were about 50% of those of ATP in dark and light. Steady-state levels of PP were not decreased by the inhibitor of non-cyclic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethyl urea]. During transition from dark to light levels of PP increased rapidly. The rate of increase corresponded to a rate of synthesis of about 150 mol x mg chl-1 x h-1. PP formation was affected by DCMU in a similar manner to ATP synthesis.The question whether the light-dependent formation of PP is a photosynthetic process or is linked to reactions releasing PP has been studied using a newly developed cell-free system from Anacystis. Rates of ATP synthesis by phenazine metosulfate-catalyzed cyclic photophosphorylation in this system were about 170 mol x mg chl-1 x h-1. Formation of PP could only be observed in presence of a trapping system which converted PP to ATP, otherwise PP was split by a particle-bound inorganic pyrophosphatase. In absence of ADP neither ATP nor PP was formed.It is concluded that the light-dependent formation of PP in Anacystis is not a photosynthetic process and that the PP is derived from ATP.Abbreviations AMS adenosine 5-monosulfate - APS adenosine 5-phosphosulfate - APSase adenosine 5-triphosphate sulfurylase - chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino)ethanesulfonic acid - PCA perchloric acid - PMS phenazine metosulfate - PPase inorganic pyrophosphatase  相似文献   

9.
Y. Mori  T. Ueda  Y. Kobatake 《Protoplasma》1987,139(2-3):141-144
Summary ThePhysarum plasmodium shows rhythmic contractile activities with a period of a few min. Phases of the oscillation in the plasmodium migrating unindirectionally agreed sideways throughout at the frontal part. So, time course of an intracellular chemical component was determined by analyzing small pieces cut off successively from the frontal part of the large plasmodium. Intracellular NAD(P)H concentration oscillated with the same period as the rhythmic contraction but with a different phase advancing about 1/3 of the period. UV irradiation suppressed the rhythmic contraction without affecting the rhythmic variation of NAD(P)H. Thus, the NAD(P)H oscillator works independently of the rhythmic contractile system, but seems entraining with each other.Abbreviations UV ultraviolet - NADH nicotinamide adenine dinucleotide, reduced form - NADPH nicotinamide adenine dinucleotide phosphate, reduced form - ATP adenosine 5-triphosphate - cAMP cyclic adenosine 3, 5-monophosphate - FMNH2 flavin mononucleotide, reduced form - TCA tricarboxylic acid - BSA bovine serum albumin - DTT dithiothreitol  相似文献   

10.
The filamentous cyanophyteNostoc muscorum A grew aseriately in light in a mineral salts (sugar-free) culture medium supplemented with adenosine 3:5-cyclic-monophosphate or N6, O2-dibutyryl adenosine 3:5-cyclic-monophosphate (1 mM). The aseriate morphology thus formed in the light on the 10th day following inoculation was similar to that formed in the dark after 20–30 days growth in cAMP-free medium containing glucose or sucrose. Inoculum previously grown in sucrose- or glucose-containing medium displayed aseriate morphology with lesser proliferation of coccoid cells as compared to inoculum grown in the absence of glucose or sucrose. cGMP, ADP, AMP and inhibitors of phosphodiesterase (theophylline and caffeine) did not have any effect on the persistence of aseriate morphology. However they stimulated cell division at the aseriate stage and delayed the release of hormogonia.Abbreviations cAMP adenosine 3:5-cyclic-monophosphate - db cAMP N6, O2-dibutyryl adenosine 3:5-cyclic-monophosphate - cGMP guanosine 3:5-cyclic-monophosphate - ATP adenosine 5-triphosphate - ADP adenosine5-diphosphate - AMP adenosine 5-monophosphate  相似文献   

11.
Metabolism of glucose by unicellular blue-green algae   总被引:32,自引:0,他引:32  
Summary A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.Abbreviations A (U)DPG ADP-glucose or UDP-glucose - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - G(int.) intracellular glucose - F-6-P fructose-6-phosphate - 6-PG 6-phosphogluconate - Ru-5-P ribulose-5-phosphate - RUDP ribulose-1,5-diphosphate - PGA 3-phosphoglycerate - GAP glyceraldehyde-3-phosphate  相似文献   

12.
Anabaena cylindrica grown in steady state continuous culture has an extractable ATP pool, measured on the basis of the luciferin-luciferase assay of 165±35 nmoles ATP mg chla -1. This pool is maintained by a dynamic balance between the rate of ATP synthesis and the rate of ATP utilization. Phosphorylating mechanisms which can maintain the pool in the short term are total photophosphorylation, cyclic photophosphorylation and oxidative phosphorylation. The alga can maintain its ATP pool by switching rapidly from one of these phosphorylating mechanisms to another depending on the environmental conditions. At each switch-over there is a transient drop in the ATP pool for a few seconds. On switching to conditions where only substrate level phosphorylation operates, the ATP pool falls immediately, but takes several hours to recover. The apparent rates of ATP synthesis by total photophosphorylation and by cyclic photophosphorylation are both much higher (210±30 and 250±13 moles ATP mg chla -1 h-1 respectively) than the apparent rate of ATP synthesis by oxidative phosphorylation (22±3 moles ATP mg chla -1 h-1). In long term experiments the ATP pool is maintained when total photophosphorylation is operating. It cannot be maintained in the long term by cyclic photophosphorylation alone in the absence of photosystem II activity or endogenous carbon compounds, or by oxidative phosphorylation in the absence of endogenous carbon compounds. Measurements of ATP, ADP and AMP show that the total pool of adenylates is similar in the light and in the dark in the short term. There is only limited production of ATP under dark anaerobic conditions when glycolysis and substrate phosphorylation can operate which suggests that these processes are of limited significance in providing ATP in Anabaena cylindrica.Abbreviations ADP adenosine 5-diphosphate - AMP adenosine 5-monophosphate - ATP adenosine 5-triphosphate - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)1,1-dimethyl urea - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PEP phosphoenolpyruvate  相似文献   

13.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fm maximum fluorescence yield - F0 non-variable fluorescence level emitted when all PS II centers are open - Fv variable part of fluorescence - PS photosystem - QA primary quinone acceptor of Photosystem II  相似文献   

14.
Two characteristic temperatures were identified from measurements of the temperature dependence of O2 evolution by Chlorella vulgaris and Anacystis nidulans: T1, the threshold temperature for inhibition of O2 evolution under saturating light conditions, and T2, the upper temperature limit for O2 evolution. Measurement of delayed light emission from photosystem II (PSII) showed that it passed through a maximum at T1 and was virtually eliminated on heating the samples to T2. Related changes were observed in low-temperature (77K) fluoresence emission spectra. Heat-stress had little effect on the absorption properties of the cells at temperatures below T1 but incubation at higher temperatures, particularly under high-light conditions, resulted in extensive absorption losses. An analysis of these measurements suggests that this increased susceptibility to photobleaching is triggered by an inhibition of the flow of reducing equivalents from PSII that normally serves to protect the light-harvesting apparatus of the cells from photo-oxidation. Adaptation to higher growth temperatures resulted in increases in the values of T1 and T2 for Anacystis nidulans but not for Chlorella vulgaris.Abbreviations PSI photosystem I - PSII photosystem II - Chl a chlorophyll a - Chl b chlorophyll b - DCMU 3-(3 4 dichlorophenyl)-11-dimethylurea - PC plastocyanin - APC allophycocyanin CIW-DPB Publication No. 887.  相似文献   

15.
M. Osanai  P. S. Chen 《Amino acids》1993,5(3):341-350
Summary The spermatophore of the silkmoth,Bombyx mori, is a reactor with a specific energy-yielding system for sperm maturation, the arginine degradation cascade. On mating, the highly viscous secretions from various glands in the male reproductive tract, which contain many enzymes and their substrates, are transferred to the female bursa (b.) copulatrix to form the spermatophore. In the spermatophore, transferred arginine-rich proteins are digested by initiatorin, an Arg-C endopeptidase of serine-protease type, and a carboxypeptidase. The produced free arginine is then hydrolyzed to urea and ornithine by arginase. Ornithine is metabolized to glutamate, follwed by forming alanine and 2-oxoglutarate. The latter, as a member of TCA-cycle, is a preferred respiratory substrate for spermatozoa and accelerates the post-testicular sperm maturation.In contrast toBombyx mori, Drosophila melanogaster produces only eupyrene spermatozoa and does not form the spermatophore. The sperm of this dipteran insect acquire motility in the v. seminalis of males. As reported forDrosophila, a high glutamate-pyruvate aminotransferase activity was found in the spermatophore as well as the v. seminalis of the silkmoth. The value in the latter organ reaches 58.3% of the whole male reproductive tract that participates in transfer of the seminal fluid.In the male reproductive system ofDrosophila, the concentration of arginine is low, whereas those of urea and ammonia are high. The accessory gland secretion contains much phosphoserine. Theses substances are transferred to female uterus with spermatozoa during mating. Most amino acids increase distinctly at 30 min after the termination of mating (ATM) and then decline, suggesting active degradation of transferred proteins in the uterus. As found inBombyx, urea increases at the post-mating period, while ornithine shows a rather low concentration. Ornithine must be converted to glutamate. In this connection, it is notable that alanine rises markedly at 30 min following mating. As in the silkmoth, the energy metabolism of the fruit fly spermatozoa involves also arginine, ornithine, urea, and proline. These findings suggest that the occurrence of the arginine degradation cascade or related metabolic pathway in this insect.Abbreviations ATM after the termination of mating - Arg-C arginine-carbon - b. bursa - d. ductus - g. glandula - GPA l-glutamate-pyruvate aminotransferase - NADH2 reduced nicotinamide-adenine dinucleotide - TCA tricarbonic acid - v. vesicula  相似文献   

16.
Pyrimidine biosynthesis was investigated in Pseudomonas cepacia ATCC 17759. The presence of the de novo pyrimidine biosynthetic pathway enzyme activities was confirmed in this strain. Following transposon mutagenesis of the wild-type cells, a mutant strain deficient for orotidine 5-monophosphate decarboxylase activity (pyrF) was isolated. Uracil, cytosine or uridine supported the growth of this mutant. Uracil addition to minimal medium cultures of the wild-type strain diminished the levels of the de novo pyrimidine biosynthetic enzyme activities, while pyrimidine limitation of the mutant cells increased those de novo enzyme activities measured. It was concluded that regulation of pyrimidine biosynthesis at the lelel of enzyme synthesis in P. cepacia was present. Aspartate transcarbamoylase activity was found to be regulated in the wild-type cells. Its activity was shown to be controlled in vitro by inorganic pyrophosphate, adenosine 5-triphosphate and uridine 5-phosphate.  相似文献   

17.
The ability to use adenosine 5-phosphosulfate (APS) or 3-phosphoadenosine 5-phosphosulfate (PAPS) as the substrate for the initial reductive step in sulfate assimilation has been tested in most of the known Rhodospirillaceae species and in some chemotrophic bacteria. Improved and optimized methods for the synthesis and purification of the sulfonucleotides APS and PAPS are described. The production of acid volatile radioactivity from 35S-APS and 35S-PAPS was measured under various conditions in the presence and absence of non-labeled sulfate. Specific differences in the ability to reduce APS or PAPS were observed among the Rhodospirillaceae species and also the chemotrophic bacteria. APS was found to be the substrate of the thiolsulfotransferase in Rps. acidophila, Rps. globiformis, Rm. vannielii, Rc. purpureus, R. tenue, Rps. gelatinosa, in Alcaligenes eutrophus and Pseudomonas aeruginosa. PAPS was the substrate in Rps. capsulata, Rps. sphaeroides, Rps. sulfidophila, Rps. palustris, Rps. viridis, R. rubrum, R. fulvum, in Paracoccus denitrificans and in several Enterobacteriaceae. The presence of different enzymatic systems for sulfate reduction in the Rhodospirillaceae family is compared with their taxonomical grouping and their possible phylogenetic relatedness.Nonstandard Abbreviations APS adenosine 5-phosphosulfate - PAPS 3-phosphate adenosine 5-phosphosulfate - DTE dithioerythrol - Rc. Rhodocyclus - R. Rhodospirillum - Rm. Rhodomicrobium - Rps. Rhodopseudomonas  相似文献   

18.
Thylakoids of Oscillatoria chalybea are able to split water. The Hill reaction of these thylakoids is sensitive to DCMU. Diphenylcarbazide can substitute for water as the electron donor to photosystem II with these fully functioning thylakoids. However, the diphenylcarbazide photooxidation is completely insensitive to 3-(3,4-dichlorophenyl)-N-N-dimethyl urea (DCMU) at high diphenylcarbazide concentrations. In with Tris-treated Oscillatoria thylakoids the water splitting capacity is lost and diphenylcarbazide restores electron transport through photosystem II as occurs with higher plant chloroplasts. However, also these photoreactions are insensitive to DCMU. If diphenylcarbazide acts in Oscillatoria as an electron donor to photosystem II the result suggests that diphenylcarbazide feeds in its electrons behind the DCMU inhibition site. This in turn indicates that in Oscillatoria the site of inhibition of DCMU is on the donor side of photosystem II.Abbreviations Used DCMU 3-(3,4-dichlorophenyl)-N-N-dimethyl urea - DPC diphenylcarbazide - DCPiP 2,6-dichlorophenol indophenol - TMB tetramethyl benzidine - A-2-sulf anthraquinone-2-sulfonate  相似文献   

19.
The ruminal bacterium Synergistes jonesii strain 78-1, which is able to degrade the pyridinediol toxin in the plant Leucaena leucephala, was studied for its ability to utilise amino acids. The organism used arginine, histidine and glycine from a complex mixture of amino acids, and both arginine and histidine supported growth in a semi-defined medium. The products of (U-14C)-arginine metabolism were CO2 acetate, butyrate, citrulline and ornithine. The labelling pattern of end products from (U-14C)-histidine metabolism differed in that carbon also flowed into formate and propionate. Arginine was catabolised by the arginine deiminase pathway which was characterised by the presence of arginine deiminase, ornithine transcarbamylase and carbamate kinase. This is the first report of a rumen bacterium that uses arginine and histidine as major energy yielding substrates.  相似文献   

20.
T. Shimmen  S. Yoshida 《Protoplasma》1993,176(3-4):174-177
Summary The temperature dependence of cytoplasmic streaming in intact and tonoplast-free cells ofNitellopsis obtusa was studied using a cryomicroscope. The streaming velocity decreases linearly with decrease in the temperature in well-buffered tonoplast-free cells but non-linearly in some intact cells. These results suggest that low temperature causes a disturbance in the homeostasis of calcium and protons, which inhibit cytoplasmic streaming in intact cells.Abbreviations ADP adenosine 5-diphosphate - APW artificial pond water - ATP adenosine 5-triphosphate - EGTA ethylene glycol-bis(-aminoethyl ether)N,N,N-tetraacetic acid - HEPES N-(2-hydroxyethyl)piperazine-N-(2-ethanesulfonic acid) - PIPES piperazine-N, N-bis(2-ethanesulfonic acid) - Tris tris(hydroxymethyl)aminoethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号