首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
N-Methyl-D-aspartate (NMDA) increases cyclic GMP levels in immature rat cerebellar slices incubated in magnesium-containing Krebs buffer in vitro. This effect is blocked by 2-amino-5-phosphonovalerate and by D-alpha-aminoadipate, but not by glutamic acid diethyl ester or gamma-D-glutamylaminomethylsulfonic acid, indicating specific involvement of the NMDA receptor. The response produced by NMDA is abolished by removal of calcium from the medium, proportional to the concentration of extracellular calcium, and blocked by a number of inorganic (Ni2+, Co2+, Cd2+, La3+, Mn2+) calcium antagonists. The responses to NMDA are not blocked by barium or strontium and persist when these ions are substituted for calcium in the incubation medium. The effects of NMDA are blocked by, but are not particularly sensitive to, the organic voltage-dependent calcium channel antagonists. Nifedipine (10 microM) produces partial inhibition of the effects of NMDA, which are also antagonized by high (greater than 200 microM) concentrations of diltiazem and verapamil. The effects of NMDA are tetrodotoxin insensitive but are abolished by omission of sodium from the medium and inhibited by a tetrodotoxin-insensitive sodium channel blocker, Zn2+. The results suggest that calcium channel opening is a consequence of NMDA receptor activation in this model. However, the sodium dependence of the response argues against the use of receptor-operated calcium channels, whereas the weak activity of the organic voltage-sensitive calcium channel antagonists argues either against the use of voltage-dependent calcium channels, or that those implicated in the effects of NMDA are insensitive to these agents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Calcium channels mediate phase shifts of the Bulla circadian pacemaker   总被引:1,自引:0,他引:1  
1. Light-induced phase advances of the activity rhythm of the Bulla ocular circadian pacemaker are blocked when the extracellular calcium concentration is reduced with EGTA to 0.13 microM. Phase advances are also blocked in low calcium solutions without EGTA [( Ca] less than 50 microM). 2. The dependence of light-induced phase delays on extracellular calcium concentration in EGTA-free seawater was determined. Phase delays are blocked at calcium concentrations below 400 microM, and reduced at concentrations of 1 mM and 3.5 mM (relative to shifts in normal ASW, [Ca] = 10 mM). Phase delays are also reduced and blocked at calcium concentrations higher than normal (60 mM and 110 mM, respectively). 3. Low calcium EGTA also blocked both phase delays and phase advances induced by pulses of depolarizing high K+ seawater. Low calcium EGTA pulses presented alone at the same times did not generate significant phase shifts. 4. The organic calcium channel antagonists verapamil, diltiazem and nitrendipine as well as the inorganic calcium channel antagonists La3+, Co2+, Cd2+, and Mn2+ were applied along with light pulses, however, the treated eyes were either phase shifted by these substances, or these substances were found to be toxic. 5. The inorganic calcium channel antagonist Ni2+ blocked both light-induced phase delays and advances at a concentration of 5 mM. Ni2+ applied alone did not generate significant phase shifts. Phase delays induced by high K+ seawater were blocked in the presence of 50 mM Ni2+ but not in 5 mM Ni2+. The light-induced CAP activity of the putative pacemaker cells was not inhibited by Ni2+, suggesting that its blocking action was probably via its known role as a calcium channel antagonist.  相似文献   

3.
The role of calcium and guanosine 3':5'-monophosphate (cyclic GMP) in the regulation of thyroid metabolism has been investigated in dog thyroid slices. Carbamoylcholine enhanced glucose carbon-1 oxidation, protein iodination, cyclic GMP accumulation and decreased thyrotropin-induced adenosine 3':5'-monophosphate (cyclic AMP) accumulation and iodine secretion; it did not affect protein synthesis. The effects of carbamoylcholine were reproduced under various experimental conditions by supplementary calcium in the medium, ouabain, and in media in which Na+ had been replaced by choline chloride. They were inhibited by lanthanum. These results further support the hypothesis that free intracellular Ca2+ is the intracellular signal for carbamoylcholine effects and suggest that a Na+ -gradient-driven Ca2+ extrusion mechanism operates in the thyroid cell. Mn2+ reproduced the effect of Ca2+ on glucose oxidation, protein iodination and cyclic GMP accumulation in Ca2+ -depleted slices and medium, and thus mimicked some intracellular effects of Ca2+. On the other hand Mn2+ inhibited the carbamoylcholine effect on thyrotropin-induced thyroid secretion and cyclic AMP accumulation, and Ca2+ inhibited the Mn2+-induced cyclic GMP accumulation. This suggests that the two ions compete for the same channel. Similarly Mn2+ inhibited calcium effects in the presence of ionophore A23187. Procaine inhibited protein iodination under all conditions suggesting a primary effect; it also inhibited all carbamoylcholine and ouabain actions. However the drug did not inhibit the effects of choline chloride and its action was reversed by raising carbamoylcholine but not Ca2+ concentration; it is therefore doubtful that procaine acts by blocking Ca2+ channels. In media without added Ca2+, Mn2+ increased cyclic GMP accumulation but did not decrease thyrotropin-induced cyclic AMP accumulation or iodine secretion, which suggests that cyclic GMP cannot be the sole mediator of the latter two effects of carbamoylcholine.  相似文献   

4.
The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.  相似文献   

5.
We have studied the ability of fertilized eggs of Ilyanassa obsoleta to undergo polar lobe formation and cytokinesis in the presence of Ca2+ antagonists (Ca2+ channel blockers, Ca2+ uptake inhibitors). Earlier work had suggested little need for exogenous Ca2+ during these cellular shape changes. Again it appears that exogenous Ca2+ probably is not required, based on cell ability to undergo the shape changes with no, or only minor, delay in the presence of 50 mM La3+ at pH 6.5, 10 mM concentrations of Ni2+ or Co2+, 1 mM Cd2+, and 100 microM concentrations of Mn2+, papaverine, verapamil, D600, or diltiazem. In nominally Ca2+-free seawater (containing approximately 10 microM Ca2+) (CFSW), there still is no effect of Cd2+ (up to 100 microM), Ni2+, Co2+, Mn2+, or diltiazem; however, papaverine, verapamil, and D600 in CFSW cause longer delays in the shape changes than they do in the presence of normal levels of Ca2+ (SW). In 10-50 microM nifedipine, shape changes are progressively delayed to the same extent in both SW and CFSW, but more so in CFSW at concentrations above 50 microM nifedipine. Among calmodulin antagonists, trifluoperazine up to 100 microM was without effect, but chlorpromazine at 25-100 microM and calmidazolium at 50-100 microM caused substantial, concentration-dependent delays in the starting times for the shape changes. Methylxanthines caused a substantial speed-up in the starting times for both polar lobe formation and cytokinesis. The most effective of these, caffeine, at optimal concentrations of 0.7-10 mM in SW or CFSW caused shape changes to occur 12-15 min earlier than in controls undergoing a normal 50-min cycle. Caffeine is known to cause release of Ca2+ from muscle sarcoplasmic reticulum. A putative antagonist of intracellular Ca2+ mobilization, TMB-8, significantly inhibited the shape changes of the Ilyanassa cells, whereas a variety of inhibitors of exogenous Ca2+ uptake noted above did not inhibit. We conclude that Ca2+ may be necessary for polar lobe formation and cytokinesis in Ilyanassa cells, but that it may be released from intracellular, sequestered stores rather than derived from exogenous sources.  相似文献   

6.
The verapamil receptor associated with the voltage-dependent calcium channel of rabbit skeletal muscle transverse tubule membranes has the following properties. (i) This receptor is stereospecific and discriminates between the different stereoisomers of verapamil, gallopamil and diltiazem. (ii) Inorganic divalent cations inhibit the binding of [3H]verapamil to its receptor in an apparently non-competitive fashion. The rank order of potency is: Ca2+ = Mn2+ greater than Mg2+ greater than Sr2+ greater than Ba2+ much greater than Co2+ much greater than Ni2+. Ca2+ and Mn2+ have inhibition constants of 0.3 mM. Binding of [3H]verapamil is also sensitive to monovalent cations such as Cs+, K+, Li+ and Na+. The most active of these cations (Cs+ and K+) have inhibition constants in the range of 30 mM. (iii) Binding of [3H]verapamil is pH-dependent and reveals the presence on the verapamil receptor of an essential ionizable group with a pKa of 6.5. (iv) A low-affinity binding site for verapamil and for some other Ca2+ channel blockers is detected by studies of dissociation kinetics of the [3H]verapamil receptor in the presence of high concentrations of verapamil, gallopamil, bepridil and diltiazem. (v) GTP and nucleoside analogs change the properties of [3H]verapamil binding to verapamil binding sites. High-affinity binding sites seem to be transferred into low-affinity sites. Dissociation constants obtained from inhibition studies of [3H]verapamil binding are in the range of 0.1-0.3 mM for GTP, ATP and Gpp(NH)p.  相似文献   

7.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

8.
Examination of influence of divalent cations (Co2+, Ni2+, Mn2+) and organic blockers (verapamil and D600) on calcium efflux from resting mammalian myocardium shows that they either inhibit or increase transiently 45Ca2+ efflux, depending on the site of action. It seems that those agents whose sites of action are limited to the sarcolemma inhibit Ca2+ efflux. Co2+, Ni2+, verapamil and D600 belong to this group. Mn2+ ions which act also apparently on intracellular structures increase transiently Ca2+ efflux. Such a finding illustrates a diversity in mechanisms of action in a group of agents generally classified as calcium channel blockers.  相似文献   

9.
The present study reports the effects on lipolysis occurring in isolated rat epididymal adipocytes of several agents which have each been found to interfere with membrane calcium transport in a variety of tissues. As reported by other workers, the local tetracaine was a strong inhibitor of hormone accelerated but not of basal lipolysis. The bivalent cations Mn2+ and Co2+ were similarly found to inhibit lipolysis stimulated with either epinephrine, ACTH, theophylline or dibutyryl cyclic AMP, whereas basal lipolysis was not markedly altered. This effect of Mn2+ and Co2+ was not mimicked by either Sr2+, Ba2+, Mg2+ or Ca2+. Cyclic AMP levels in adipocytes stimulated with epinephrine or ACTH tended to be higher in the presence of Mn2+ and Co2+. It is concluded, therefore, that Mn2+ and Co2+ inhibit lipolysis by uncoupling cyclic AMP accumulation from activation of triglyceride lipase. In contrast to Mn2+ and Co2+, the calcium antagonists La3+ and D600 were without effect on lipolysis. The antilipolytic effect of tetracaine, Mn2+ and Co2+ was found to persist in the absence of extracellular calcium, suggesting therefore that the antilipolytic effect of these drugs is unrelated to inhibition of calcium influx into adipocytes. The possibility is discussed that lipolytic agents cause an intracellular redistribution of calcium ion and that local anesthetics, Mn2+ and Co2+ interfere with lipolysis by preventing this intracellular redistribution of calcium.  相似文献   

10.
The effect of Ca2+ ions on methanogenesis and growth of Methanothermobacter thermautotrophicus was investigated. The calcium chelator ethylene glycol bis(2-aminoethylether)-N,N,N',N'-tetra-acetic acid, calcium ionophore A23187 and ruthenium red all inhibited growth of this strain. Methane formation was strongly dependent on the external Ca2+ concentration in a resting cell suspension. In addition, methanogenesis of Ca2+ preloaded cells was stimulated by 400%. Inhibitor studies revealed that Co2+ and Ni2+, inorganic antagonists of Ca2+ transport, strongly inhibited methanogenesis in these cells. Interestingly, our findings imply that one of the enzymes of methanogenesis might catalyse a Ca2+ -dependent step and allow a direct activation of methanogenesis by Ca2+ ions.  相似文献   

11.
In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

12.
The cyclic GMP (cGMP) content was rapidly (greater than 30 s) increased by serotonin [5-hydroxytryptamine (5-HT)] (EC50 = 10 microM), and the increase lasted for greater than 10 min in NG108-15 cells. The 5-HT-induced elevation of cGMP level (EC50 = 10 microM) at 20 s ("fast" elevation) was inhibited by ICS 205-930 or MDL 72,222 and by Ca2+ deficiency in the reaction medium but not by organic Ca2+ antagonists. The 5-HT effect at 10 min ("slow" elevation) was not inhibited by several antagonists for 5-HT receptors of the 1A, 1B, 1C, 1D, 2, and 3 subtypes and was independent from external Ca2+ concentration. The fast and slow effects of 5-HT were similar to the effects of bradykinin and atrial natriuretic peptide (ANP), respectively, in aspects of both Ca2+ dependency and time course of the effects. Bradykinin transiently stimulated formation of inositol phosphates as well as accumulation of cGMP, a finding suggesting that intracellular Ca2+ is involved in bradykinin-induced cGMP accumulation as shown in the fast response to 5-HT. ANP, an activator of membrane-associated guanylate cyclase (mGC), slowly (approximately 60 s) increased the cGMP content (EC50 = 10 nM), a result lasting for greater than 10 min, and the effects were independent from external Ca2+, as shown in the slow response to 5-HT. 5-HT and ANP did not induce formation of inositol phosphates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cyclic GMP is rapidly formed a few seconds after binding of chemotactic signalling molecules to specific receptors on the cell surface of Dictyostelium amoebae. This phenomenon could be mimicked by addition of a pulse of Ca2+ to permeabilised amoebae. The concentration of Ca2+ for half-maximal response was 60 microM. Other ions (K+, Na+, Mg+ or Mn+) had no effect. A pulse of 5 microM IP3 produced a cyclic GMP response of similar magnitude but IP2 elicited no response. The data provide strong support for the hypothesis that cell surface receptor binding induces cyclic GMP formation by liberating Ca2+ from internal stores.  相似文献   

14.
Human erythrocytes possess a muscarinic cholinergic receptor sensitive to cholinergic agonists which stimulate transient increases in calcium uptake and subsequent cyclic GMP formation. These phenomena can be blocked by atropine and EGTA. The cholinergic stimulation of cyclic GMP formation depends on Ca2+ uptake from external media. The effects of cholinergic agonists on the erythrocyte resemble their effect on calcium channels in nervous tissue. The cholinergic stimulation of Ca2+ uptake in erythrocytes may affect the calcium-sensitive mechanism involved in the shape, permeability and rigidity of these cells.  相似文献   

15.
Nitric oxide (NO) acts as a messenger molecule in the CNS by activating soluble guanylyl cyclase. Rat brain synaptosomal NO synthase was stimulated by Ca2+ in a concentration-dependent manner with half-maximal effects observed at 0.3 microM and 0.2 microM when its activity was assayed as formation of NO and L-citrulline, respectively. Cyclic GMP formation was apparently inhibited, however, at Ca2+ concentrations required for the activation of NO synthase, indicating a down-regulation of the signal in NO-producing cells. Purified synaptosomal guanylyl cyclase was not inhibited directly by Ca2+, and the effect was not mediated by a protein binding to guanylyl cyclase at low or high Ca2+ concentrations. In cytosolic fractions, the breakdown of cyclic GMP, but not that of cyclic AMP, was highly stimulated by Ca2+, and 3-isobutyl-1-methylxanthine did not block this reaction effectively. The effects of Ca2+ on cyclic GMP hydrolysis and on apparent guanylyl cyclase activities were abolished almost completely in the presence of the calmodulin antagonist calmidazolium, whose effect was attenuated by added calmodulin. Thus, a Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase is highly active in synaptic areas of the brain and may prevent elevations of intracellular cyclic GMP levels in activated, NO-producing neurons.  相似文献   

16.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

17.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

18.
The effects of arachidonic acid and thrombin on calcium movements have been studied in fura-2-loaded platelets by a procedure which allows simultaneous monitoring of the uptake of manganese, a calcium surrogate for Ca2+ channels, and the release of Ca2+ from intracellular stores. Arachidonic acid induced both Ca2+ (Mn2+) entry through the plasma membrane and Ca2+ release from the intracellular stores. The release of Ca2+ was prevented by cyclo-oxygenase inhibitors and mimicked by the prostaglandin H2/thromboxane A2 receptor agonist U46619. Ca2+ (Mn2+) entry required higher concentrations of arachidonic acid and was not prevented by either cyclo-oxygenase or lipoxygenase inhibitors. Several polyunsaturated fatty acids reproduced the effect of arachidonic acid on Ca2+ (Mn2+) entry, but higher concentrations were required. The effects of maximal concentrations of arachidonic acid and thrombin on the uptake of Mn2+ were not additive. Both agonists induced the entry of Ca2+, Mn2+, Co2+ and Ba2+, but not Ni2+, which, in addition, blocked the entry of the other divalent cations. However, arachidonic acid, but not thrombin, increased a Ni2(+)-sensitive permeability to Mg2+. The effect of thrombin but not that of arachidonic acid was prevented either by pretreatment with phorbol ester or by an increase in cyclic-AMP levels. Arachidonic acid also accelerated the uptake of Mn2+ by human neutrophils, rat thymocytes and Ehrlich ascites-tumour cells.  相似文献   

19.
Bradykinin, which activates polymodal nociceptors, increased cyclic GMP (cGMP) in a capsaicin-sensitive population of cultured sensory neurones from rat dorsal root ganglia (DRG) by stimulating guanylate cyclase, but had no effect on cyclic AMP (cAMP). In nonneuronal cells from DRG, bradykinin increased cAMP, but not cGMP. The bradykinin-induced increase in cGMP in the neurones was completely blocked by removal of extracellular Ca2+, or by incubation of the cells with the calcium channel blockers nifedipine and verapamil. Pretreatment of the neurones with either dibutyryl cGMP or sodium nitroprusside (which elevates cGMP) inhibited bradykinin-induced formation of inositol phosphates. It is possible that cGMP could be involved in the regulation of polyphosphoinositide turnover in DRG neurones.  相似文献   

20.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号