首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Histidine biosynthesis in Corynebacterium glutamicum is regulated not only by feedback inhibition by the first enzyme in the pathway, but also by repression control of the synthesis of the histidine enzymes. C. glutamicum histidine genes are located and transcribed in two unlinked loci, hisEG and hisDCB-orf1-orf2-hisHA-impA-hisFI. We constructed plasmid pK18hisDPtac to replace the native hisD promoter with the tac promoter, and overexpressed phosphoribosyl-ATP-pyrophosphohydrolase, encoded by hisE, and ATP-phosphoribosyltransferase, encoded by hisG. The l-histidine titer at 0.85 g l?1 was 80 % greater in the transformed bacterium and production of byproducts, l-alanine and l-tryptophan, was significantly decreased. However, accumulation of glutamic acid increased by 58 % (2.8 g l?1). This study represents the first attempt to substitute the histidine biosynthesis pathway promoter in the chromosome with a stronger promoter to increase histidine production.  相似文献   

2.
3.
4.
Genetic fusions that place the lactose genes under histidine operon control   总被引:4,自引:0,他引:4  
The genes of the Salmonella histidine operon (his) have been placed on an F′ pro lac plasmid using genetic methods that rely on recombinational homology provided by Tn10 transposon insertions. The position and orientation of the transposed his genes permit subsequent deletion mutations to form operon fusions that put the lac genes under his operon control. Strains carrying such fusions show co-ordinate regulation of histidinol dehydrogenase and beta-galactosidase expression. While all of the operon fusions have an intact hisD gene, complementation testing and deletion mapping reveal that the genes downstream of hisD are deleted to varying extents. The beta-galactosidase produced by these operon fusions is itself a fused protein containing the amino terminus of one or another of the his enzymes. Two of the operon fusions having join-points in the hisB gene retain histidinol phosphate phosphatase activity and may produce a bifunctional protein having beta-galactosidase as well as the phosphatase activity. The methods that have been used to isolate these his-lac fusions should be applicable to other genetic systems.  相似文献   

5.
6.
The available sequences of genes encoding the enzymes associated with histidine biosynthesis suggest that this is an ancient metabolic pathway that was assembled prior to the diversification of Bacteria, Archaea, and Eucarya. Paralogous duplication, gene elongation, and fusion events of several different his genes have played a major role in shaping this biosynthetic route. We have analyzed the structure and organization of histidine biosynthetic genes from 55 complete archaeal genomes and combined it with phylogenetic inference in order to investigate the mechanisms responsible for the assembly of the his pathway and the origin of his operons. We show that a wide variety of different organizations of his genes exists in Archaea and that some his genes or entire his (sub-)operons have been likely transferred horizontally between Archaea and Bacteria. However, we show that, in most Archaea, his genes are monofunctional (except for hisD) and scattered throughout the genome, suggesting that his operons might have been assembled multiple times during evolution and that in some cases they are the result of recent evolutionary events. An evolutionary model for the structure and organization of his genes in LUCA is proposed.  相似文献   

7.
Expression from a 2.3 kb region upstream of the inducible acetamidase gene from Mycobacterium smegmatis was shown to be upregulated by acetamide. A DNA fragment containing the start of the M. smegmatis hisD gene was cloned in front of the promoter, such that the antisense message was produced. When this construct was induced in vivo, the bacteria became phenotypically histidine auxotrophs; this auxotrophy was restored by histidine supplementation. Auxotrophy was not observed under non-induced conditions. Antisense mutagenesis may be useful for observing the phenotypic inactivation of specific mycobacterial genes, and an inducible system such as that described would allow the study of essential genes.  相似文献   

8.
9.
Molecular access to amino acid excretion by Corynebacterium glutamicum and Escherichia coli led to the identification of structurally novel carriers and novel carrier functions. The exporters LysE, RhtB, ThrE and BrnFE each represent the protoype of new transporter families, which are in part distributed throughout all of the kingdoms of life. LysE of C. glutamicum catalytes the export of basic amino acids. The expression of the carrier gene is regulated by the cell-internal concentration of basic amino acids. This serves, for example, to maintain homoeostasis if an excess of l-lysine or l-arginine inside the cell should arise during growth on complex media. RhtB is one of five paralogous systems in E. coli, of which at least two are relevant for l-threonine production. A third system is relevant for l-cysteine production. It is speculated that the physiological function of these paralogues is related to quorum sensing. ThrE of C. glutamicum exports l-threonine and l-serine. However, a ThrE domain with a putative hydrolytic function points to an as yet unknown role of this exporter. BrnFE in C. glutamicum is a two-component permease exporting branched-chained amino acids from the cell, and an orthologue in B. subtilis exports 4-azaleucine.  相似文献   

10.
11.
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence.  相似文献   

12.
13.
Several his mutations were found to influence nitrogen fixation in Klebsiella pneumoniae: hisB, hisC, and hisD mutants had 50% of wild-type levels of nitrogenase activity when supplied with 30 μg or less histidine/ml although this concentration did not limit protein synthesis and the mutants retained a Nif+ plate phenotype. A hisA mutation had a similar but more dramatic effect. At low concentrations of histidine the hisA mutant strain had only 5% of the nitrogenase activity found at high histidine concentration or in a his+ strain, and was also Nif- on low histidine agar plates. Addition of adenine restored nitrogenase activity in the hisA but not the hisB, hisC, or hisD mutants. Low levels of intracellular ATP, a consequence of hisG enzyme activity, correlated with loss of nitrogen-fixing ability in the hisA mutant which failed to sustain nif gene expression under these conditions. Synthesis of other major cell proteins was relatively unaffected indicating that nif gene expression is selectively regulated by the energy status of the organism.  相似文献   

14.
As with most amino acid biosynthetic pathways in streptomycetes, enzymes of arginine biosynthesis inStreptomyces coelicolor show only slight derepression in minimal medium without, as opposed to with, exogenous arginine. However, when an arginine auxotroph was cultured in limiting arginine, ornithine carbamoyltransferase (OCT) activities rose by as much as 100-fold. The response was not due to a general starvation effect. To elucidate the repression-derepression mechanism, a DNA fragment containing the upstream region of the previously isolatedS. coelicolor argCJB cluster was cloned into a multicopy vector and transformed into wild-typeS. coelicolor; a slight transient derepression of OCT was observed in minimal medium without, though not with, added arginine, consistent with titration by the insert of a negatively acting macromolecule such as a repressor. A sub-fragment carrying the 5′ end ofargC and the region immediately upstream showed specific binding, in mobility shift assays, to purified AhrC, the repressor/activator of genes of arginine metabolism inBacillus subtilis. It is therefore likely that inS. coelicolor, expression of arginine biosynthesis genes is controlled by a protein homologous to the well-characterisedB. subtilis andEscherichia coli repressors.  相似文献   

15.
16.
17.
18.
T L Legerton  C Yanofsky 《Gene》1985,39(2-3):129-140
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号