首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rahman MM  McFadden G 《Journal of virology》2011,85(23):12505-12517
The myxoma virus (MYXV)-encoded pyrin domain-containing protein M013 coregulates inflammatory responses mediated by both the inflammasome and the NF-κB pathways. Infection of human THP-1 monocytic cells with a MYXV construct deleted for the M013 gene (vMyxM013-KO), but not the parental MYXV, activates both the inflammasome and NF-κB pathways and induces a spectrum of proinflammatory cytokines and chemokines, like interleukin-1β (IL-1β), tumor necrosis factor (TNF), IL-6, and monocyte chemoattractant protein 1. Here, we report that vMyxM013-KO virus-mediated activation of inflammasomes and secretion of IL-1β are dependent on the adaptor protein ASC, caspase-1, and NLRP3 receptor. However, vMyxM013-KO virus-mediated activation of NF-κB signaling, which induces TNF secretion, was independent of ASC, caspase-1, and either the NLRP3 or AIM2 inflammasome receptors. We also report that early synthesis of pro-IL-1β in response to vMyxM013-KO infection is dependent upon the components of the inflammasome complex. Activation of the NLRP3 inflammasome and secretion of IL-1β was also dependent on the release of cathepsin B and production of reactive oxygen species (ROS). By using small interfering RNA screening, we further demonstrated that, among the RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs), only TLR2, TLR6, TLR7, and TLR9 contribute to the NF-κB-dependent secretion of TNF and the inflammasome-dependent secretion of IL-1β in response to vMyxM013-KO virus infection. Additionally, we demonstrate that early triggering of the mitogen-activated protein kinase pathway by vMyxM013-KO virus infection of THP-1 cells plays a critical common upstream role in the coordinate induction of both NF-κB and inflammasome pathways. We conclude that an additional cellular sensor(s)/receptor(s) in addition to the known RLRs/TLRs plays a role in the M013 knockout virus-induced activation of NF-κB pathway signaling, but the activation of inflammasomes entirely depends on sensing by the NLRP3 receptor in response to vMyxM013-KO infection of human myeloid cells.  相似文献   

2.
Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Although there is a large diversity of clinical signs and symptoms, a severe inflammatory response is common to all leptospirosis patients. The mechanism of IL-1β secretion during Leptospira infection has been previously studied in mouse macrophages. However, the outcome of Leptospira infection is very different in human and murine macrophages, and the mechanisms responsible for IL-1β secretion in human macrophages had not been investigated. This study therefore examines the effects of Leptospira interrogans infection on inflammasome activation and proinflammatory cytokine expression in human macrophages. Increased mRNA and protein expression of NLRP3 was observed by real time RT-PCR and flow cytometry at 1 h after co-cultivation. Enzyme-linked immunosorbent assay (ELISA) determination showed that IL-1β and IL-18 are released in the culture supernatants at 1 h after cultivation. The inhibition assay showed that glybenclamide (a K+ efflux inhibitor that blocks NLRP3 inflammasome activation) and N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) and NLRP3 depletion with siRNAs reduced the levels of IL-1β and IL-18 release. Moreover, the levels of IL-1β and IL-18 production decreased in CA-074 (a cathepsin B inhibitor) and NAC (an anti-oxidant) pretreated human macrophages, compared to untreated controls. This study suggests that L. interrogans infection leads to reactive oxygen species (ROS)- and cathepsin B-dependent NLRP3 inflammasome activation, which subsequently mediates caspase-1 activation and IL-1β and IL-18 release.  相似文献   

3.
4.
Endothelial dysfunction caused by endothelial cells senescence and chronic inflammation is tightly linked to the development of cardiovascular diseases. NLRP3 (NOD-like receptor family pyrin domain-containing3) inflammasome plays a central role in inflammatory response that is associated with diverse inflammatory diseases. This study explores the effects and possible mechanisms of NLRP3 inflammasome in endothelial cells senescence. Results show an increment of pro-inflammatory cytokine interleukin (IL) −1β secretion and caspase-1 activation during the senescence of endothelial cells induced by bleomycin. Moreover, secreted IL-1β promoted endothelial cells senescence through up-regulation of p53/p21 protein expression. NLRP3 inflammasome was found to mediate IL-1β secretion through the production of ROS (reactive oxygen species) during the senescence of endothelial cells. Furthermore, the association of TXNIP (thioredoxin-interacting protein) with NLRP3 induced by ROS promoted NLRP3 inflammasome activation in senescent endothelial cells. In addition, the expressions of NLRP3 inflammasome related genes, ASC (apoptosis associated speck-like protein containing a CARD), TXNIP, cleaved caspase-1 and IL-1β, were also increased in vitro and in vivo studies. These findings indicate that endothelial senescence could be mediated through ROS and NLRP3 inflammasome signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases.  相似文献   

5.
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is critical for caspase-1 activation and the proteolytic processing of pro-IL-1β. However, the mechanism that regulates NLRP3 inflammasome activation remains unclear. In this paper, we demonstrate that tripartite-motif protein 30 (TRIM30) negatively regulates NLRP3 inflammasome activation. After stimulation with ATP, an agonist of the NLRP3 inflammasome, knockdown of TRIM30 enhanced caspase-1 activation and increased production of IL-1β in both J774 cells and bone marrow-derived macrophages. Similarly with ATP, knockdown of TRIM30 increased caspase-1 activation and IL-1β production triggered by other NLRP3 inflammasome agonists, including nigericin, monosodium urate, and silica. Production of reactive oxygen species was increased in TRIM30 knockdown cells, and its increase was required for enhanced NLRP3 inflammasome activation, because antioxidant treatment blocked excess IL-1β production. Conversely, overexpression of TRIM30 attenuated reactive oxygen species production and NLRP3 inflammasome activation. Finally, in a crystal-induced NLRP3 inflammasome-dependent peritonitis model, monosodium urate-induced neutrophil flux and IL-1β production was reduced significantly in TRIM30 transgenic mice as compared with that in their nontransgenic littermates. Taken together, our results indicate that TRIM30 is a negative regulator of NLRP3 inflammasome activation and provide insights into the role of TRIM30 in maintaining inflammatory responses.  相似文献   

6.
7.
Adenovirus type 5 (Ad5) infection of macrophages results in rapid secretion of interleukin-1β (IL-1β) and is dependent on the inflammasome components NLRP3 and ASC and the catalytic activity of caspase-1. Using lentivirus-expressed short hairpin RNA (shRNA) and competitive inhibitors, we show that Ad-induced IL-1β release is dependent upon Toll-like receptor 9 (TLR9) sensing of the Ad5 double-stranded DNA (dsDNA) genome in human cell lines and primary monocyte-derived macrophages but not in mouse macrophages. Additionally, a temperature-sensitive mutant of Ad5 unable to penetrate endosomal membranes, ts1, is unable to induce IL-1β release in TLR2-primed THP-1 cells, suggesting that penetration of endosomal membranes is required for IL-1β release. Disruption of lysosomal membranes and the release of cathepsin B into the cytoplasm are required for Ad-induced NLRP3 activation. Ad5 cell entry also induces reactive oxygen species (ROS) production, and inhibitors of ROS prevent Ad-induced IL-1β release. Ad5 activation of NLRP3 also induces necrotic cell death, resulting in the release of the proinflammatory molecule HMGB1. This work further defines the mechanisms of virally induced inflammasome activation.  相似文献   

8.
Inflammasomes are multi-protein complexes that control the production of pro-inflammatory cytokines such as IL-1β. Inflammasomes play an important role in the control of immunity to tumors and infections, and also in autoimmune diseases, but the mechanisms controlling the activation of human inflammasomes are largely unknown. We found that human activated CD4+CD45RO+ memory T-cells specifically suppress P2X7R-mediated NLRP3 inflammasome activation, without affecting P2X7R-independent NLRP3 or NLRP1 inflammasome activation. The concomitant increase in pro-IL-1β production induced by activated memory T-cells concealed this effect. Priming with IFNβ decreased pro-IL-1β production in addition to NLRP3 inflammasome inhibition and thus unmasked the inhibitory effect on NLRP3 inflammasome activation. IFNβ suppresses NLRP3 inflammasome activation through an indirect mechanism involving decreased P2X7R signaling. The inhibition of pro-IL-1β production and suppression of NLRP3 inflammasome activation by IFNβ-primed human CD4+CD45RO+ memory T-cells is partly mediated by soluble FasL and is associated with down-regulated P2X7R mRNA expression and reduced response to ATP in monocytes. CD4+CD45RO+ memory T-cells from multiple sclerosis (MS) patients showed a reduced ability to suppress NLRP3 inflammasome activation, however their suppressive ability was recovered following in vivo treatment with IFNβ. Thus, our data demonstrate that human P2X7R-mediated NLRP3 inflammasome activation is regulated by activated CD4+CD45RO+ memory T cells, and provide new information on the mechanisms mediating the therapeutic effects of IFNβ in MS.  相似文献   

9.
Innate cellular immunity is the immediate host response against pathogens, and activation of innate immunity also modulates the induction of adaptive immunity. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular receptors that recognize conserved patterns associated with intracellular pathogens, but information about their role in the host defense against DNA viruses is limited. Here we report that varicella-zoster virus (VZV), an alphaherpesvirus that is the causative agent of varicella and herpes zoster, induces formation of the NLRP3 inflammasome and the associated processing of the proinflammatory cytokine IL-1β by activated caspase-1 in infected cells. NLRP3 inflammasome formation was induced in VZV-infected human THP-1 cells, which are a transformed monocyte cell line, primary lung fibroblasts, and melanoma cells. Absent in melanoma gene-2 (AIM2) is an interferon-inducible protein that can form an alternative inflammasome complex with caspase-1 in virus-infected cells. Experiments in VZV-infected melanoma cells showed that NLRP3 protein recruits the adaptor protein ASC and caspase-1 to form an NLRP3 inflammasome complex independent of AIM2 protein and in the absence of free radical reactive oxygen species release. NLRP3 was also expressed extensively in infected skin xenografts in the severe combined immunodeficiency mouse model of VZV pathogenesis in vivo. We conclude that NLRP3 inflammasome formation is an innate cellular response to infection with this common pathogenic human herpesvirus.  相似文献   

10.
Komune N  Ichinohe T  Ito M  Yanagi Y 《Journal of virology》2011,85(24):13019-13026
Inflammasomes are cytosolic protein complexes that stimulate the activation of caspase-1, which in turn induces the secretion of the inflammatory cytokines Interleukin-1β (IL-1β) and IL-18. Recent studies have indicated that the inflammasome known as the NOD-like-receptor-family, pyrin domain-containing 3 (NLRP3) inflammasome recognizes several RNA viruses, including the influenza and encephalomyocarditis viruses, whereas the retinoic acid-inducible gene I (RIG-I) inflammasome may detect vesicular stomatitis virus. We demonstrate that measles virus (MV) infection induces caspase-1-dependent IL-1β secretion in the human macrophage-like cell line THP-1. Gene knockdown experiments indicated that IL-1β secretion in MV-infected THP-1 cells was mediated by the NLRP3 inflammasome but not the RIG-I inflammasome. MV produces the nonstructural V protein, which has been shown to antagonize host innate immune responses. The recombinant MV lacking the V protein induced more IL-1β than the parental virus. THP-1 cells stably expressing the V protein suppressed NLRP3 inflammasome-mediated IL-1β secretion. Furthermore, coimmunoprecipitation assays revealed that the V protein interacts with NLRP3 through its carboxyl-terminal domain. NLRP3 was located in cytoplasmic granular structures in THP-1 cells stably expressing the V protein, but upon inflammasome activation, NLRP3 was redistributed to the perinuclear region, where it colocalized with the V protein. These results indicate that the V protein of MV suppresses NLRP3 inflammasome-mediated IL-1β secretion by directly or indirectly interacting with NLRP3.  相似文献   

11.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

12.
Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1β secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1β in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1β was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1β and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1β by antigen-presenting cells in an NLRP3- and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1β in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1β through at least two separate mechanisms: by targeting pro-IL-1β for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.  相似文献   

13.
14.
Human respiratory syncytial virus (RSV) constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although "controlled" inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β) plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the "first signal" constitutes activation of toll-like receptor-2 (TLR2)/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two "second signals" are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS) and potassium (K(+)) efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal) and ROS/potassium efflux (second signal) for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection.  相似文献   

15.
Acinetobacter baumannii (A. baumannii) is a Gram-negative bacterium, which acts as an opportunistic pathogen and causes hospital-acquired pneumonia and bacteremia by infecting the alveoli of epithelial cells and macrophages. Evidence reveals that A. baumannii outer membrane protein 34 (Omp34) elicits cellular immune responses and inflammation. The innate immunity NOD-like receptor 3 (NLRP3) inflammasome exerts critical function against pneumonia caused by A. baumannii infection, however, the role of Omp34 in the activation of the NLRP3 inflammasome and its corresponding regulatory mechanism are not clearly elucidated. The present study aimed to investigate whether Omp34 elicited NLRP3 inflammasome activation through the mitochondria-derived reactive oxygen species (ROS). Our results showed that Omp34 triggered cell pyroptosis by up-regulating the expression of NLRP3 inflammasome-associated proteins and IL-1β release in a time- and dose-dependent manner. Omp34 induced the expression of caspase-1-p10 and IL-1β, which was significantly attenuated by NLRP3 gene silencing in RAW264.7 mouse macrophage cells. Additionally, Omp34 stimulated RAW264.7 mitochondria to generate ROS, while the ROS scavenger Mito-TEMPO inhibited the Omp34-triggered expression of NLRP3 inflammasome-associated proteins and IL-1β synthesis. The above findings indicate that mitochondria-derived ROS play an important role in the process of NLRP3 inflammasome activation. In summary, our study demonstrates that the A. baumannii pathogen pattern recognition receptor Omp34 activates NLRP3 inflammasome via mitochondria-derived ROS in RAW264.7 cells. Accordingly, down-regulating the mitochondria-derived ROS prevents the severe infection consequences caused by A. baumannii-induced NLRP3 inflammasome hyper-activation.  相似文献   

16.
17.
18.
Inflammasomes are multimeric protein complexes involved in the processing of IL-1β through Caspase-1 cleavage. NLRP3 is the most widely studied inflammasome, which has been shown to respond to a large number of both endogenous and exogenous stimuli. Although studies have begun to define basic pathways for the activation of inflammasome and have been instrumental in identifying therapeutics for inflammasome related disorders; understanding the inflammasome activation at the molecular level is still incomplete. Recent functional studies indicate that microRNAs (miRs) regulate molecular pathways and can lead to diseased states when hampered or overexpressed. Mechanisms involving the miRNA regulatory network in the activation of inflammasome and IL-1β processing is yet unknown. This report investigates the involvement of miR-133a-1 in the activation of inflammasome (NLRP3) and IL-1β production. miR-133a-1 is known to target the mitochondrial uncoupling protein 2 (UCP2). The role of UCP2 in inflammasome activation has remained elusive. To understand the role of miR-133a-1 in regulating inflammasome activation, we either overexpressed or suppressed miR-133a-1 in differentiated THP1 cells that express the NLRP3 inflammasome. Levels of Caspase-1 and IL-1β were analyzed by Western blot analysis. For the first time, we showed that overexpression of miR-133a-1 increases Caspase-1 p10 and IL-1β p17 cleavage, concurrently suppressing mitochondrial uncoupling protein 2 (UCP2). Surprisingly, our results demonstrated that miR-133A-1 controls inflammasome activation without affecting the basal expression of the individual inflammasome components NLRP3 and ASC or its immediate downstream targets proIL-1β and pro-Caspase-1. To confirm the involvement of UCP2 in the regulation of inflammasome activation, Caspase-1 p10 and IL-1β p17 cleavage in UCP2 of overexpressed and silenced THP1 cells were studied. Suppression of UCP2 by siRNA enhanced the inflammasome activity stimulated by H2O2 and, conversely, overexpression of UCP2 decreased the inflammasome activation. Collectively, these studies suggest that miR-133a-1 suppresses inflammasome activation via the suppression of UCP2.  相似文献   

19.
The intracellular bacterium Francisella tularensis is the causative agent of tularemia, a potentially fatal disease. In macrophages, Francisella escapes the initial phagosome and replicates in the cytosol, where it is detected by the cytosolic DNA sensor AIM2 leading to activation of the AIM2 inflammasome. However, during aerosol infection, Francisella is also taken up by dendritic cells. In this study, we show that Francisella novicida escapes into the cytosol of bone marrow-derived dendritic cells (BMDC) where it undergoes rapid replication. We show that F. novicida activates the AIM2 inflammasome in BMDC, causing release of large amounts of IL-1β and rapid host cell death. The Francisella Pathogenicity Island is required for bacterial escape and replication and for inflammasome activation in dendritic cells. In addition, we show that bacterial DNA is bound by AIM2, which leads to inflammasome assembly in infected dendritic cells. IFN-β is upregulated in BMDC following Francisella infection, and the IFN-β signalling pathway is partially required for inflammasome activation in this cell type. Taken together, our results demonstrate that F. novicida induces inflammasome activation in dendritic cells. The resulting inflammatory cell death may be beneficial to remove the bacterial replicative niche and protect the host.  相似文献   

20.
The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is a cytoplasmic supramolecular complex that is activated in response to cellular perturbations triggered by infection and sterile injury. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which induces the maturation and release of interleukin-1β (IL-1β) and IL-18, as well as cleavage of gasdermin D (GSDMD), which promotes a lytic form of cell death. Production of IL-1β via NLRP3 can contribute to the pathogenesis of inflammatory disease, whereas aberrant IL-1β secretion through inherited NLRP3 mutations causes autoinflammatory disorders. In this review, we discuss recent developments in the structure of the NLRP3 inflammasome, and the cellular processes and signaling events controlling its assembly and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号