首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Christine Gietl  Bertold Hock 《Planta》1984,162(3):261-267
Glyoxysomal malate dehydrogenase (gMDH; EC 1.1.1.37) is synthesized by a reticulocyte system in the presence of watermelon mRNA (Citrullus vulgaris Schrad., var. Kleckey's Sweet No 6) as a cytosolic, higher-molecular-weight precursor (41 kdalton). We now show that this precursor is posttranslationally sequestered by a crude glyoxysomal fraction or by glyoxysomes purified on a PercollR gradient to a proteolytically protected form (60 min proteinase-K treatment at 4° C) with the size of the gMDH subunit (33 kdalton). In the presence of buffer instead of organelles a complete degradation of the precursor is obtained. The in-vitro organelle import, however, depends upon the presence of proteases such as proteinase K or trypsin. After short proteolytic treatments (e.g. 10 min proteinase K at 4° C), the correct processing of the MDH precursor is obtained even in the absence of organelles. This product, however, is not sequestered in vitro to a protease-resistant form by glyoxysomes. The possibility is discussed that under in-vivo conditions pre-gMDH is processed on the outside of the glyoxysomal membrane and transferred immediately after processing into the organelle presumably as a gMDH monomer followed by refolding and dimerization.Abbreviations gMDH glyoxysomal malate dehydrogenase - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - TPCK-trypsin trypsin treated with l-1-tosylamide-2-phenylethyl chloromethyl ketone Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

2.
C. Gietl  B. Hock 《Planta》1986,167(1):87-93
A heterologous in-vitro system is described for the import of the precursor to glyoxysomal malate dehydrogenase from watermelon (Citrullus vulgaris Schrad., cv. Kleckey's Sweet No. 6) cotyledons into glyoxysomes from castor-bean (Ricinus communis L.) endosperm. The 41-kDa precursor is posttranslationally sequestered and correctly processed to the mature 33-kDa subunit by a crude glyoxysomal fraction or by glyoxysomes purified on a sucrose gradient. The import and the cleavage of the extrasequence is not inhibited by metal chelators such as 1,10-phenanthroline and ethylenediaminetetraacetic acid. Uncouplers (carbonylcyanide m-chlorophenylhydrazone), ionophores (valinomycin), or inhibitors of oxidative phosphorylation (oligomycin) and ATP-ADP translocation (carboxyatractyloside) do not interfere, thus indicating the independence of the process of import by the organelle from the energization of the glyoxysomal membrane.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - EDTA ethylenediaminetetraacctic acid - gMDH glyoxysomal malate dehydrogenase - PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
R. -A. Walk  B. Hock 《Planta》1977,136(3):211-220
Molecular properties of the glyoxysomal and mitochondrial isoenzyme of malate dehydrogenase (EC 1.1.1.37; L-malate: NAD+ oxidoreductase) from watermelon cotyledons (Citrullus vulgaris Schrad.) were investigated, using completely purified enzyme preparations. The apparent molecular weights of the glyoxysomal and mitochondrial isoenzymes were found to be 67,000 and 74,000 respectively. Aggregation at high enzyme concentrations was observed with the glyoxysomal but not with the mitochondrial isoenzyme. Using sodium dodecyl sulfate electrophoresis each isoenzyme was found to be composed of two polypeptide chains of identical size (33,500 and 37,000, respectively). The isoenzymes differed in their isoelectric points (gMDH: 8,92, mMDH: 5.39), rate of heat inactivation (gMDH: 1/2 at 40°C=3.0 min; mMDH: stable at 40°C; 1/2 at 60°C=4.5 min), adsorption to dextran gels at low ionic strenght, stability against alkaline conditions and their pH optima for oxaloacetate reduction (gMDH: pH 6.6, mMDH: pH 7.5). Very similar pH optima, however, were observed for L-malate oxidation (pH 9.3–9.5). The results indicate that the glyoxysomal and mitochondrial MDH of watermelon cotyledons are distinct proteins of different structural composition.Abbreviations EDTA ethylene diamine tetraacetic acid - gMDH and mMDH glyoxysomal and mitochondrial malate dehydrogenase, respectively  相似文献   

4.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

5.
In order to investigate a possible association between soybean malate synthase (MS; l-malate glyoxylate-lyase, CoA-acetylating, EC 4.1.3.2) and glyoxysomal malate dehydrogenase (gMDH; (S)-malate: NAD+ oxidoreductase, EC 1.1.1.37), two consecutive enzymes in the glyoxylate cycle, their elution profiles were analyzed on Superdex 200 HR fast protein liquid chromatography columns equilibrated in low- and high-ionicstrength buffers. Starting with soluble proteins extracted from the cotyledons of 5-d-old soybean seedlings and a 45% ammonium sulfate precipitation, MS and gMDH coeluted on Superdex 200 HR (low-ionic-strength buffer) as a complex with an approximate relative molecular mass (Mr) of 670000. Dissociation was achieved in the presence of 50 mM KCl and 5 mM MgCl2, with the elution of MS as an octamer of Mr 510000 and of gMDH as a dimer of Mr 73 000. Polyclonal antibodies raised to the native copurified enzymes recognized both denatured MS and gMDH on immunoblots, and their native forms after gel filtration. When these antibodies were used to screen a ZAP II expression library containing cDNA from 3-d-old soybean cotyledons, they identified seven clones encoding gMDH, whereas ten clones encoding MS were identified using an antibody to SDS-PAGE-purified MS. Of these cDNA clones a 1.8 kb clone for MS and a 1.3-kb clone for gMDH were fully sequenced. While 88% identity was found between mature soybean gMDH and watermelon gMDH, the N-terminal transit peptides showed only 37% identity. Despite this low identity, the soybean gMDH transit peptide conserves the consensus R(X6)HL motif also found in plant and mammalian thiolases.The nucleotide sequence data reported in this paper have been submitted to Genbank and assigned the accession numbers LOI628 for gMDH and L01629 for MS.  相似文献   

6.
Dithiothreitol activation of spinach leaf NADP malate dehydrogenase is mediated by protein factors that have been partially purified by chromatography on DEAE cellulose. Evidence for their intrachloroplastic localization has been obtained.Abbreviations DTT dithiothreitol - MDH malate dehydrogenase  相似文献   

7.
Summary Plasma membrane vesicles isolated from onion roots showed oxaloacetate reductase activity as well as other oxidoreductase activities. Purification and further sequencing showed that the protein responsible for the activity is a 40 kDa protein which corresponds to the cytosolic soluble malate dehydrogenase. However, the activity remained bound to the membrane after repeated freezing and thawing cycles and further washing, excluding a cytosolic contamination as the source of the activity. Furthermore, a second 28 kDa protein has been copurified together with the 40 kDa protein. The plasmalemma oxaloacetate reductase activity shows both donor and acceptor sites located towards the cytoplasmic side of the plasma membrane. This enzyme catalyzed the oxidation of NADH by oxaloacetate and the reduction of NAD+ by malate in the presence of an oxaloacetate-withdrawing system. We conclude that a significant amount of the cytosolic malate dehydrogenase can be specifically attached to the cytosolic face of the plasmalemma. A possible role in a putative malate shuttle associated to the plasma membrane is discussed.Abbreviations AFR ascorbate free radical - DQ duroquinone - OA oxaloacetate - DPIP dichlorophenolindophenol - MDH malate dehydrogenase - PHMB p-hydroxymercuribenzoate  相似文献   

8.
Malate dehydrogenase (MDH; EC 1.1.1.37) was characterized from Thermoleophilum album NM, a gram-negative aerobic bacterium obligate for thermophily and n-alkane substrates. The enzyme was purified by affinity chromatography and electroelution. The MDH had a mol.wt. of 61,000 and consisted of two subunits, each with a mol.wt. of 32,500. T. album NM MDH migrated further on nondenaturing polyacrylamide gels than did other MDHs. The MDH was active from 30°–95° C with optimum activity occurring at 60° C and pH 7.5. Kinetic data were determined at 60° C and pH 7.5. The K m values for malate and NAD were 1.41 mM and 0.26 mM, respectively. The K m for reduction of oxalacetate was 5.43 mM and 0.31 mM for NADH. The amino acid composition of T. album NM MDH differed in the amounts of Arg, Lys, Gly, Pro and His from the MDHs of other thermophilic and mesophilic organism. The N-terminal amino acid sequence had no appreciable homology with MDHs of other species.  相似文献   

9.
Summary Conditional lethality in soybean, Glycine max (L.) Merr., occurred in F2 plants when cytoplasmicchlorophyll mutant Genetic Type T275 was the female parent and when either nuclear mutants T253 or T323 plants were the male parents. Mutant T253 [Mdh1-n (Urbana) y20 (Urbana) k2] is missing two of three mitochondrial malate dehydrogenase isozymes [Mdh1-n (Urbana)] and has yellowish-green leaves [y20 (Urbana)] and a tan-saddle pattern seed coat (k2). Mutant T323 [Mdh1-n (Ames 2) y20 (Ames 2)] also is missing two of three mitochondrial malate dehydrogenase isozymes [Mdh1-n (Ames 2)] and has yellowishgreen leaves [y20 (Ames 2)], but has yellow seed coat (K2). Mutants T275, T253, and T323 are viable both in the field and glasshouse. The genotypes cyt-Y2 Mdh1-n (Urbana) y20 (Urbana) k2/Mdh1-n (Urbana) y20 (Urbana) k2 and cyt-Y2 Mdh1-n (Ames 2) y20 (Ames 2)/Mdh1-n (Ames 2) y20 (Ames 2) are conditional lethals. These genotypes are lethal under field conditions, but plants survive in reduced light under shadecloth in the glasshouse. We do not know if their interaction with cyt-Y2 is due to Mdh1-n, y20, or Mdh1-n y20. The reciprocal cross (cyt-Y2 as male parent) gives viable genotypes. These conditional lethal genotypes should be useful for studies on the interaction between organelle and nuclear genomes.This is journal paper no. J-14777 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011-1010. Project 2985  相似文献   

10.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

11.
Summary A third set of malate dehydrogenase loci have been identified and located on the short arms of homoeologous group 5 chromosomes in wheat. Allelic differences have been found at each of the three Mdh-3 loci. However, Mdh-D3 appears to be least variable, with a second allele found only in Sears' Synthetic among a survey of 42 varieties. Homoeoloci were identified on chromosome 7 (5H) of Hordeum vulgare, the short arm of 5E in Agropyron elongatum and 5U in Aegilops umbellulata.  相似文献   

12.
H. Asker  D. D. Davies 《Planta》1984,161(3):272-280
Four of the five isoenzymes of lactate dehydrogenase present in potato tubers have been isolated and their kinetic properties examined. The pyruvate-reductase activity of isoenzyme-4 is greatly reduced at low pH, the affinity for both pyruvate and NADH is reduced and ATP has a stronger inhibitory effect. If the design properties of an enzyme dictate a high affinity for substrates, then the Km values for lactate, glyoxylate and NAD are consistent with an oxidative role for isoenzyme-4. The same considerations do not permit a conclusion about the physiological role of isoenzymes-1 to-3. However, an overview of the kinetic properties of these isoenzymes indicates that isoenzyme-1 is best adapted for the role of pyruvate reductase. Consideration of the relationships between kinetic constants and electrophoretic mobilities of the isoenzymes, leads us to predict that isoenzyme-5 is well adapted for a role in the oxidation of lactate or glyoxylate. The lactate dehydrogenase of potato leaves appears to consist prodominantly of an isoenzyme with the same mobility as isoenzyme-2 of the tubers and the two isoenzymes are probably identical. The kinetic properties of this isoenzyme are consistent with roles in either oxidation or reduction.Abbreviation Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

13.
Chloroplasts isolated from spinach (Spinacia oleracea L.) leaves and green sweet-pepper (Capsicum annuum L. var. grossum (L.) Sendt.) fruits contain NADP-dependent malate dehydrogenase (MDH; EC 1.1.1.82) and the bispecific NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13). The NADP-dependent MDH and GAPDH are activated in the light, and inactive in the dark. We found that chloroplasts possess additional NAD-dependent MDH activity which is, like the NAD-dependent GAPDH activity, not influenced by light. In heterotrophic chromoplasts from red sweet-pepper fruits, the NADP-dependent MDH and the NAD(P)-GAPDH isoenzymes disappear during the developmental transition and only NAD-specific isoforms are found. Spinach chloroplasts contain both NAD/H and NADP/H at significant concentrations. Measurements of the pyridine dinucleotide redox states, performed under dark and various light conditions, indicate that NAD(H) is not involved in electron flow in the light. To analyze the contribution of NAD(H)-dependent reactions during dark metabolism, plastids from spinach leaves or green and red sweet-pepper fruits were incubated with dihydroxyacetone phosphate (DHAP). Exogenously added DHAP was oxidized into 3-phosphoglycerate by all types of plastids only in the presence of oxaloacetate, but not with nitrite or in the absence of added electron acceptors. We conclude that the NAD-dependent activity of GAPDH is essential in the dark to produce the ATP required for starch metabolism; excess electrons produced during triose-phosphate oxidation can selectively be used by NAD-MDH to form malate. Thus NADPH produced independently in the oxidative pentose-phosphate pathway will remain available for reductive processes inside the plastids. Received: 2 July 1997 / Accepted: 20 October 1997  相似文献   

14.
A malate dehydrogenase (MDH) was characterized from the cyanobacterium Coccochloris peniocystis. The enzyme was purified approximately 180-fold and had a molecular weight of about 90000. The enzyme had a pH optimum of pH 6.7 to 7.5; a Km (malate) of 5.6 mM and Kms for NAD and NADP of 24 M and 178 M, respectively, although similar Vmax were obtained with either pyridine nucleotide. Enzyme activity was inhibited by ATP, citrate, oxalacetate, acetyl CoA and CoA. Enzyme assays with uniformly 14C-labelled malate caused no 14CO2 release, indicating this MDH is not a malic enzyme. Electrophoresis and S-200 gel filtration of the partially purified enzyme indicated a single MDH was present in this preparation. A second, less abundant, MDH was present in crude extracts. The presence of MDH in this organism is consistent with the operation of a glyoxylate cycle which, in the absence of a TCA cycle, would provide organic acids required in secondary carbon metabolism. ATP inhibition of MDH may allow for light regulation of MDH activity since, in the light, oxaloacetic acid is generated by phosphoenolpyruvate carboxylase activity.Abbreviations MDH malate dehydrogenase - PEPcase phosphoenolpyruvate carboxylase - MOPS 3-[N-Morpholino] propane sulfonic acid - TRIS Tris(hydroxymethyl)-aminomethane - EDTA Disodium Ethylenadiamine Tetraacetate - MES 2[N-Morpholino]-ethane Sulfonic Acid - EPPS N-2-Hydroxyethylpiperazine Propane - MW Molecular weight - OAA Oxaloacetic acid  相似文献   

15.
Two allozymes (MDHf and MDHs) of cytoplasmic malate dehydrogenase of Drosophila virilis were partially purified and their biochemical properties were compared. MDHf has a pH optimum of 9.75 and MDHs one of 9.25 for malate oxidation. Optimal pH for oxaloacetate reduction is 6.75 and 8.0 for MDHf and MDHs, respectively. The Km value for oxaloacetate of MDHs is approximately twice as that of MDHf. No differences were found with respect to thermostability and Km's for malate, NAD+, or NADH. These results are discussed in terms of the physiological role of cytoplasmic malate dehydrogenase of D. virilis.This work was supported in part by grants from the Ministry of Education, Japan, Nos. 134050 and 154205.  相似文献   

16.
Summary Two allelic forms of NAD specific malate dehydrogenase were found in samples of a wild population of Corydalis solida. The dimeric nature and the origin of the heterodimeric form has been demonstrated by in vitro dissociation and recombination of the subunits detected by subsequent electrophoresis. The method is applicable for polyacrylamide gel electrophoresis of crude leaf extracts of individual MDH isozyme forms.  相似文献   

17.
We report herein the complete coding sequence of a Taenia solium cytosolic malate dehydrogenase (TscMDH). The cDNA fragment, identified from the T. solium genome project database, encodes a protein of 332 amino acid residues with an estimated molecular weight of 36517 Da. For recombinant expression, the full length coding sequence was cloned into pET23a. After successful expression and enzyme purification, isoelectrofocusing gel electrophoresis allowed to confirm the calculated pI value at 8.1, as deduced from the amino acid sequence. The recombinant protein (r-TscMDH) showed MDH activity of 409 U/mg in the reduction of oxaloacetate, with neither lactate dehydrogenase activity nor NADPH selectivity. Optimum pH for enzyme activity was 7.6 for oxaloacetate reduction and 9.6 for malate oxidation. Kcat values for oxaloacetate, malate, NAD, and NADH were 665, 47, 385, and 962 s−1, respectively. Additionally, a partial characterization of TsMDH gene structure after analysis of a 1.56 Kb genomic contig assembly is also reported.  相似文献   

18.
The properties of the system which reverses light modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase activity in pea chloroplasts were examined. A factor catalyzing dark modulation of these enzymes was found. This factor cochromatographed with thioredoxin in all systems used (Sephacryl S-200, Sephadex G-75, DEAE-cellulose). Inhibition of dithiothreitol-dependent modulation and of dark reversal by antibody against Escherichia coli thioredoxin further suggest that the dark factor is in fact thioredoxin. It appears that the reaction is the reverse of the previously described dithiothreitol-dependent thioredoxin-catalyzed modulation of enzymes. The limiting step in vitro seems to be the oxidation of thioredoxin during the dark period.  相似文献   

19.
20.
The use of polyethylene glycol (PEG) as a refolding additive to a refolding cocktail comprising the molecular bichaperone ClpB and DnaKJE significantly enhances chaperone‐mediated refolding of heat‐denatured malate dehydrogenase (MDH). The critical factor to affect the refolding yield is the time point of introducing PEG to the refolding cocktail. The refolding efficiency reached approximately 90% only when PEG was added at the beginning of refolding reaction. The synergistic coordination of an inexpensive refolding additive PEG with the ClpB/DnaKJE bichaperone system may provide an economical route to further enhance the efficacy of ClpB/DnaKJE refolding cocktail approach, facilitating its implementation in large‐scale refolding processes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号