首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Amphetamine and it analogs have been shown to affect operant behavior maintained on the differential reinforcement of a low-rate (DRL) schedule. The aim of the present study was to investigate what specific component of the DRL response is affected by d-amphetamine. The acute effects of d-amphetamine on a DRL task were compared with those of the selective dopamine D1 and D2 receptor antagonists, SCH23390 and raclopride, respectively. Pentylenetetrazole and ketamine were also used as two reference drugs for comparison with d-amphetamine as a psychostimulant. Rats were trained to press a lever for water reinforcement on a DRL 10-s schedule. Acute treatment of d-amphetamine (0, 0.5, and 1.0 mg/kg) significantly increased the response rate and decreased the reinforcement in a dose-related fashion. It also caused a horizontal leftward shift in the inter-response time (IRT) distribution at the doses tested. Such a shifting effect was confirmed by a significant decrease in the peak time, while the mean peak rate and burse response remained unaffected. In contrast, both SCH23390 (0, 0.05, and 0.10 mg/kg) and raclopride (0, 0.2, and 0.4 mg/kg) significantly decreased the total, non-reinforced, and burst responses. The de-burst IRT distributions were flattened out as shown by the dose-related decreases in the mean peak rate for both dopamine antagonists, but no dramatic shift in peak time was detected. Interestingly, neither pentylenetetrazole (0, 5, and 10 mg/kg) nor ketamine (0, 1, and 10 mg/kg) disrupted the DRL behavioral performance. It is then conceivable that d-amphetamine at the doses tested affects the temporal regulation of DRL behavior. The effectiveness of d-amphetamine is derived from its drug action as a psychostimulant. Taken together, these data suggest that different behavioral components of DRL task are differentially sensitive to pharmacological manipulation.  相似文献   

2.
The present study was designed to compare the putative differential behavioral consequences of treatment with SCH23390 (a selective dopamine D1 receptor blocker) and raclopride (a selective dopamine D2 receptor blocker) by employing a run-climb-run (RCR) behavioral task of different lengths. Rats were trained to traverse an uncovered floor alleyway (150 cm), climb a vertical rope (70 or 130 cm), and run across an upper board (100 cm) to access water for the reinforcement. At doses of 0.05, 0.10 and 0.15 mg/kg administered intraperitoneally 60 min before the behavioral session, both SCH23390 and raclopride significantly increased the total time to complete the tasks in a dose-related fashion. Microstructural analysis on the RCR behavioral performance revealed that the most apparent impairment induced by either drug was observed as the subject shifted motion from the end of the floor alleyway to the rope when hopping or to initiate climbing. However, the motion shift from climbing to running on the upper board was significantly impaired by raclopride, but not by SCH23390. Surprisingly, neither SCH23390 nor raclopride affected the climbing response itself. Running responses on the floor alleyway board were significantly disrupted by raclopride, whereas those on the upper board were significantly disrupted by SCH23390. Deficits induced by both drugs were more profound for the longer compared to the shorter rope, and were most notably shown at the transition area from running to climbing. These data indicate that both dopamine D1 and D2 receptors are involved in the RCR behavior performance. The results also suggest that the cost of motoric demand for behavioral performance is important for evaluating of the effects of drugs blocking dopamine receptors.  相似文献   

3.
We showed previously that amphetamine challenge produces a delayed increase in glutamate efflux in the ventral tegmental area of both naive and chronic amphetamine-treated rats. The present study examined the mechanisms underlying this response. The NMDA receptor antagonist MK-801 (0.1 mg/kg, i.p.) or the D1 dopamine receptor antagonist SCH 23390 (0.1 mg/kg, i.p.), given 30 min before acute amphetamine (5 mg/kg, i.p.), prevented amphetamine-induced glutamate efflux. Neither antagonist by itself altered glutamate efflux. Ibotenic acid lesions of the prefrontal cortex similarly prevented amphetamine-induced glutamate efflux, while producing a trend toward decreased basal glutamate levels (82.8% of sham group). Previous work has shown that the doses of NMDA and D1 receptor antagonists used in this study prevent the induction of behavioral sensitization when coadministered repeatedly with amphetamine, and that identical prefrontal cortex lesions performed before repeated amphetamine prevent the induction of ambulatory sensitization. Thus, treatments that prevent acute amphetamine from elevating glutamate efflux in the ventral tegmental area also prevent repeated amphetamine from eliciting behavioral sensitization. These findings suggest that repeated elevation of glutamate levels during a chronic amphetamine regimen may contribute to the cascade of neuroadaptations within the ventral tegmental area that enables the induction of sensitization.  相似文献   

4.
Brain dopamine (DA) systems are known to be important in regulation of behavior conditioned to appetitive stimuli. Nevertheless, despite a large body of evidence showing behavioral deficits in the operant conditioning paradigm produced by DA receptor blockade, there have been relatively few studies directly assessing behavioral changes in classical conditioning paradigm under this drug treatment. By employing an appetitive Pavlovian conditioning task, the present work investigated the effects of selective D1 and D2 receptor antagonists on the expression and acquisition of the conditioned orienting response (COR) and food-cup approach. SCH23390 (0, 0.05, and 0.10 mg/kg) and raclopride (0, 0.1, and 0.2 mg/kg) were administered via an intra-peritoneal route in a between-group design. Data from Experiment 1 showed that both SCH23390 and raclopride suppressed expression of the COR and food-cup approach, but only the impairment produced by raclopride reached a significant level. In Experiment 2, with SCH23390 being administered during the acquisition phase, the suppressed COR was completely restored in a subsequent (24 h later) drug-free session. In contrast, the suppressed COR in raclopride-pretreated groups was only partially restored. These findings support the view that the DA system plays a role in the neural substrates underlying this appetitive conditioning. In addition, D2 receptors are more likely involved in the modulation of learning process of the COR than D1 receptors.  相似文献   

5.
Single injections of cocaine, amphetamine, or methamphetamine increased RGS2 mRNA levels in rat striatum by two- to fourfold. The D1 dopamine receptor-selective antagonist SCH-23390 had no effect by itself but strongly attenuated RGS2 mRNA induction by amphetamine. In contrast, the D2 receptor-selective antagonist raclopride induced RGS2 mRNA when administered alone and greatly enhanced stimulation by amphetamine. To examine the effects of repeated amphetamine on RGS2 expression, rats were treated with escalating doses of amphetamine (1.0-7.5 mg/kg) for 4 days, followed by 8 days of multiple daily injections (7.5 mg/kg/2 h x four injections). Twenty hours after the last injection the animals were challenged with amphetamine (7.5 mg/kg) or vehicle and killed 1 h later. In drug-naive animals, acute amphetamine induced the expression of RGS2, 3, and 5 and the immediate early genes c-fos and zif/268. RGS4 mRNA levels were not affected. Prior repeated treatment with amphetamine strongly suppressed induction of immediate early genes and RGS5 to a challenge dose of amphetamine. In sharp contrast, prior exposure to amphetamine did not reduce the induction of RGS2 and RGS3 mRNAs to a challenge dose of amphetamine, indicating that control of these genes is resistant to amphetamine-induced tolerance. These data establish a role for dopamine receptors in the regulation of RGS2 expression and suggest that RGS2 and 3 might mediate some aspects of amphetamine-induced tolerance.  相似文献   

6.
Administration of psychostimulants modulates mRNA of several regulators of guanine nucleotide-binding protein signaling (RGSs) proteins in the brain. In the present study, the regulation of amphetamine-induced decrease of RGS4 expression in the rat forebrain was evaluated. RGS4 mRNA was reduced by amphetamine in an inverse, dose-dependent manner. The lowest dose (2.5 mg/kg) decreased RGS4 mRNA in caudate putamen for up to 6 h after injection whereas the decrease in several frontal cortical areas was detected at 3 h only. Analysis of RGS4 immunoreactivity by western blotting revealed a decrease 3 h after amphetamine solely in the caudate putamen. Systemic administration of D(1) (SCH23390) or D(2) (eticlopride) receptor antagonists blocked amphetamine-induced locomotion but amphetamine augmented both the SCH23390-induced increase and the eticlopride-induced decrease in RGS4 mRNA in the caudate putamen. Further, the down-regulation of RGS4 immunoreactivity by eticlopride was robust whereas the effect of SCH23390 was blunted as compared with its effect on mRNA. These data suggest that, by decreasing RGS4 expression in the caudate putamen via D(1) receptors, acute amphetamine could disinhibit RGS4-sensitive guanine nucleotide-binding protein alpha-subunit i- and/or q-coupled signaling pathways and favor mechanisms that counterbalance D(1) receptor stimulation.  相似文献   

7.

Background

Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli that have not been previously paired with primary rewards. However, it is unclear whether psychomotor stimulants facilitate behavioral interaction with unconditioned distal stimuli.

Principal Findings

We found that noncontingent administration of amphetamine into subregions of the rat ventral striatum, particularly in the vicinity of the medial olfactory tubercle, facilitates lever pressing followed by visual signals that had not been paired with primary rewards. Noncontingent administration of amphetamine failed to facilitate lever pressing when it was followed by either tones or delayed presentation or absence of visual signals, suggesting that visual signals are key for enhanced behavioral interaction. Systemic administration of amphetamine markedly increased locomotor activity, but did not necessarily increase lever pressing rewarded by visual signals, suggesting that lever pressing is not a byproduct of heightened locomotor activity. Lever pressing facilitated by amphetamine was reduced by co-administration of the dopamine receptor antagonists SCH 23390 (D1 selective) or sulpiride (D2 selective).

Conclusions

Our results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.  相似文献   

8.
Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D(1) receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D(1) and D(2) receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D(1) or D(2) receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58(IPK), in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D(2)-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors.  相似文献   

9.
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.  相似文献   

10.
Systemic administration of the specific antagonists of D1 (SCH23390, 0.005-0.1 mg/kg) and D2/D3 (raclopride, 0.1-0.25 mg/kg) dopamine receptors leeds to dose-dependent increase of the reaction time and decrease of conditined reflex probability up to full blocking (in the case of SCH23390) of alimentary and escape conditioned placing reaction in cats. The action of both antagonists was far more suppressive regarding conditioned escape reflex. The action of SCH23390 was far more effective than that of raclopride concerning both types of conditioned reflexes.  相似文献   

11.
Sprague-Dawley rats were used to study the influence of local application of antagonists of D1 and D2 receptors (SCH 23390 and raclopride, respectively) on neuronal responses in globus pallidus evoked by somatosensory cortex stimulation. SCH 23390 was found to produce a short-latency inhibition in response to cortical stimulation and to block the long-latency inhibition. Raclopride application suppressed the short-latency inhibition and revealed the long-latency inhibition in response to cortical stimulation. It is suggested that the observed phenomena are based on the modulation of GABA releasing in stria-pallidar terminals by endogenous dopamine.  相似文献   

12.
Epidermal growth factor (EGF) is one of the ErbB receptor ligands implicated in schizophrenia neuropathology as well as in dopaminergic development. Based on the immune inflammatory hypothesis for schizophrenia, neonatal rats are exposed to this cytokine and later develop neurobehavioral abnormality such as prepulse inhibition (PPI) deficit. Here we found that the EGF-treated rats exhibited persistent increases in tyrosine hydroxylase levels and dopamine content in the globus pallidus. Furthermore, pallidal dopamine release was elevated in EGF-treated rats, but normalized by subchronic treatment with risperidone concomitant with amelioration of their PPI deficits. To evaluate pathophysiologic roles of the dopamine abnormality, we administered reserpine bilaterally to the globus pallidus to reduce the local dopamine pool. Reserpine infusion ameliorated PPI deficits of EGF-treated rats without apparent aversive effects on locomotor activity in these rats. We also administered dopamine D1-like and D2-like receptor antagonists (SCH23390 and raclopride) and a D2-like receptor agonist (quinpirole) to the globus pallidus and measured PPI and bar-hang latencies. Raclopride (0.5 and 2.0 μg/site) significantly elevated PPI levels of EGF-treated rats, but SCH23390 (0.5 and 2.0 μg/site) had no effect. The higher dose of raclopride induced catalepsy-like changes in control animals but not in EGF-treated rats. Conversely, local quinpirole administration to EGF-untreated control rats induced PPI deficits and anti-cataleptic behaviors, confirming the pathophysiologic role of the pallidal hyperdopaminergic state. These findings suggest that the pallidal dopaminergic innervation is vulnerable to circulating EGF at perinatal and/or neonatal stages and has strong impact on the D2-like receptor-dependent behavioral deficits relevant to schizophrenia.  相似文献   

13.
CCK-1-receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rats are hyperphagic and exhibit a greater preference for sucrose compared with lean controls [Long-Evans Tokushima Otsuka (LETO)]. To directly assess motivation to work for sucrose reward in this model of obesity and type 2 diabetes, we examined the operant performance of OLETF rats at nondiabetic and prediabetic stages (14 and 24 wk of age, respectively) on fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. To evaluate the involvement of dopamine systems, the effects of the D1 receptor antagonist SCH23390 (100 and 200 nmol/kg ip) and the D2 receptor antagonist raclopride (200 and 400 nmol/kg ip), were also tested on PR responding for sucrose. Compared with age-matched LETO rats, 14-wk-old OLETF rats emitted more licks on the "active" empty spout operant on the FR-10 schedule of reinforcement to obtain 0.01 M and 0.3 M sucrose and completed higher ratio requirements on the PR schedule to gain access to 0.3 M and 1.0 M sucrose. At 24 wk, this effect was limited to 1.0 M sucrose. Both antagonists were potent in reducing operant responding to 0.3 M sucrose in both strains at both ages, and there was no strain effect to SCH23390 at either age. OLETF rats, on the other hand, showed an increased sensitivity to the higher dose of raclopride, resulting in reduced responding to sucrose reinforcement at 24 wk. Taken together, these findings provide the first direct evidence for an increased motivation for sucrose reward in the OLETF rats and suggest altered D2 receptor regulation with the progression of obesity and prediabetes.  相似文献   

14.
SCH23390 has neurochemical properties characteristic of a specific D1 dopamine receptor antagonist. However, it is a potent inhibitor of dopamine-mediated behaviors which previously had been thought to be linked to D2 receptors. The metabolism of SCH23390 following parenteral administration to rats was much more rapid in the periphery than in brain, and SCH23390 had behavioral effects long after its circulating concentration had declined below detectable levels. Furthermore, the stimulation of adenylate cyclase by dopamine was attenuated in striatal homogenates taken from rats treated with SCH23390 as much as twelve hours before sacrifice. Pretreatment with cis-flupenthixol, a compound with equivalent D1 potency in vitro, failed to inhibit dopamine-stimulated adenylate cyclase activity one or four hours following injection, despite the fact that this dose produced significant behavioral effects. These data indicate that SCH23390 may act with unusual tenacity at certain sites in the central nervous system.  相似文献   

15.
Evidence indicates that stress conditions might lead to drug dependence. Recently, we have demonstrated that exposure to far infrared ray (FIR) attenuates acute restraint stress via induction of glutathione peroxidase-1 (GPx-1) gene. We investigated whether FIR affects methamphetamine (MA)-induced behavioral sensitization and whether FIR-mediated pharmacological activity requires interaction between dopamine receptor and GPx-1 gene. We observed that MA treatment significantly increased GPx-1 expression in the striatum of wild-type (WT) mice. Interestingly, exposure to FIR potentiated MA-induced increase in GPx-1 expression. This phenomenon was also observed in animals receiving MA with dopamine D1 receptor antagonist SCH23390. However, dopamine D2 receptor antagonist sulpiride did not affect MA-induced GPx-1 expression. FIR exposure or SCH23390, but not sulpiride, significantly attenuated MA-induced behavioral sensitization. Exposure to FIR significantly attenuated MA-induced dopamine D1 receptor expression, c-Fos induction and oxidative burdens. FIR-mediated antioxidant effects were also more pronounced in mitochondrial- than cytosolic-fraction. In addition, FIR significantly attenuated against MA-induced changes in mitochondrial superoxide dismutase and mitochondrial GPx activities, mitochondrial transmembrane potential, intramitochondrial Ca2+ level, mitochondrial complex-I activity, and mitochondrial oxidative burdens. The attenuation by FIR was paralleled that by SCH23390. Effects of FIR or SCH23390 were more sensitive to GPx-1 KO than WT mice, while SCH23390 treatment did not exhibit any additive effects on the protective activity mediated by FIR, indicating that dopamine D1 receptor constitutes a molecular target of FIR. Our result suggests that exposure to FIR ameliorates MA-induced behavioral sensitization via possible interaction between dopamine D1 receptor and GPx-1 gene.  相似文献   

16.
We investigated the effect of methamphetamine (MA) injections on the circadian organization of behavior and individual tissues in the mouse. Scheduled, daily injections of MA resulted in anticipatory activity, with an increase in locomotor activity immediately prior to the time of injection. Daily MA also shifted the peak time of PER2 expression in the liver, pituitary, and salivary glands. It has been suggested that reward pathways, and dopamine signaling in particular, may underlie the effects of MA on the circadian system. To test this hypothesis, we examined the effect of the D1 receptor antagonist SCH23390 (SCH) on circadian rhythms. The MA-induced shift in the phase of pituitary and salivary glands was attenuated by pretreatment with the D1 antagonist SCH23390 (SCH). Interestingly, daily SCH, administered alone, also affected some circadian oscillators. The livers and lungs (but not pituitaries or salivary glands) of mice treated with daily injections of SCH displayed disrupted rhythms of PER2 expression, suggesting that D1 receptor signaling is important for entrainment of these organs. From these results, we conclude that MA has widespread effects within the circadian system, and that these effects are mediated, at least in part, by the dopaminergic system. This study also identifies a role for dopamine signaling in normal entrainment of circadian oscillators.  相似文献   

17.
18.
Dopamine (DA) D2 receptors regulate DA transporter (DAT) activity, and mediate some behavioral effects of amphetamine. DA clearance and amphetamine-stimulated locomotion are reduced in hypoinsulinemic [streptozotocin (STZ)-treated] rats, and these deficits are normalized by repeated treatment with amphetamine. Here, a role for D2 receptors in mediating amphetamine-induced normalization of these parameters was investigated. One week after a saline or STZ injection (50 mg/kg), rats were treated with amphetamine (1.78 mg/kg), raclopride (0.056 mg/kg), saline, or combinations thereof, every-other-day for 8 days with locomotor activity measured following each treatment. Conditioned place preference (CPP) for amphetamine and in vivo chronoamperometry to measure DA clearance were carried out on days 17 and 18, respectively, after STZ or saline. Baseline locomotion and DA clearance were significantly reduced in STZ-treated rats compared with control rats. In STZ-treated rats, amphetamine treatment normalized DA clearance, and restored the locomotor-stimulating effects of amphetamine. Raclopride prevented normalization of these parameters. Amphetamine produced CPP in both STZ-treated and control rats; raclopride significantly attenuated amphetamine-induced CPP in control and not in STZ-treated rats. These results support a role for D2 receptors in regulating DA transporter activity, and further demonstrate that D2 receptors contribute to changes in sensitivity to amphetamine in hypoinsulinemic rats.  相似文献   

19.
SKF 38393 (5 mg/kg), but not quinpirole, shortened the duration of loss of righting reflex produced in pentobarbital-narcotized rats. This effect was blocked by atropine (2 mg/kg), but not by atropine methylbromide, suggesting involvement of central cholinergic mechanisms. The analeptic effect was also blocked by SCH 23390 (0.2 mg/kg) or raclopride (2 mg/kg). SKF 38393 also increased sodium dependent high affinity choline uptake (HACU) in cortical and hippocampal synaptosomes that had been depressed by pentobarbital. SCH 23390 or raclopride prevented the SKF 38393 reversal of the depressed HACU, indicating that both D1 and D2 mechanisms were involved mediating the analeptic effect. These results provide neurochemical evidence that cortical and hippocampal D1-mediated cholinergic activation results in a behavioral arousal (analeptic) response. They also suggest that DA mechanisms may be involved in regulation of cortical and hippocampal cholinergic neurons.  相似文献   

20.
[11C]-(+)-PHNO (4-propyl-9-hydroxynaphthoxazine) is a new agonist radioligand that provides a unique opportunity to measure the high-affinity states of the D2 receptors (D2-high) using positron emission tomography (PET). Here we report on the distribution, displaceablity, specificity and modeling of [11C]-(+)-PHNO and compare it with the well characterized antagonist D2 radioligand, [11C]raclopride, in cat. [11C]-(+)-PHNO displayed high uptake in striatum with a mean striatal binding potential (BP) of 3.95 +/- 0.85. Pre-treatment with specific D1 (SCH23390), D2 (raclopride, haloperidol) and D3 receptor (SB-277011) antagonists indicated that [11C]-(+)-PHNO binding in striatum is specific to D2 receptors. Within-subject comparisons showed that [11C]-(+)-PHNO BP in striatum was almost 2.5-fold higher than that measured with [11C]-(-)-NPA ([11C]-(-)-N-propyl-norapomorphine). Comparison of the dose-effect of amphetamine (0.1, 0.5 and 2 mg/kg; i.v.) showed that [11C]-(+)-PHNO was more sensitive to the dopamine releasing effect of amphetamine than [11C]raclopride. Amphetamine induced up to 83 +/- 4% inhibition of [11C]-(+)-PHNO BP and only up to 56 +/- 8% inhibition of [11C]raclopride BP. Scatchard analyses of [11C]-(+)-PHNO and [11C]raclopride bindings in two cats showed that the Bmax obtained with the agonist (29.6 and 32.9 pmol/mL) equalled that obtained with the antagonist (30.6 and 33.4 pmol/mL). The high penetration of [11C]-(+)-PHNO in brain, its high signal-to-noise ratio, its favorable in vivo kinetics and its high sensitivity to amphetamine shows that [11C]-(+)-PHNO has highly suitable characteristics for probing the D2-high with PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号