首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract: Methanol extraction conducted with a HPLC-Iike device and spectroscopic analysis were used to remove and characterize the sulphur layer (Ss) present on freshly ground pyrite surface after dry grinding. Accurate measurements of ferric and sulphate contents in the leachate showed a significant delay in the lag phase and in the first step of oxidation by Thiobacillus ferrooxidans for the so-cleaned pyrite (without sulphur layer) in comparison to the initial pyrite (with sulphur layer). Voltammetric studies (current-potential curves) showed a modification of the anodic behaviour of the initial pyrite, corresponding to a higher chemical oxidability of the uncleaned pyrite. During the bacterial oxidation, the difference in redox potential between a special pyrite electrode and a platinum standard electrode both placed in the bioleaching reactor was shown to be related to the occurrence of a sulphur layer. This difference, which is more important in the case of the initial pyrite (with sulphur layer), corresponded to an increase in oxidation kinetics of the pyrite by Thiobacillus ferrooxidans .  相似文献   

2.
Summary Pyrite was microbiologically removed by Thiobacillus ferrooxidans in pure and mixed cultures from German bituminous coal at 10% pulp density with maximum pyrite oxidation rate of 350 mg pyritic S/l per day. However, at pulp densities above 20% bacterial growth and consequently pyrite oxidation were completely prevented both in a conventional airlift reactor and in a stirred-tank reactor. Modifying the airlift reactor by adapting a conical bottom part, bacterial growth and pyrite oxidation could be achieved even at 30% pulp density, resulting in a pyrite removal of more than 90% at a pyrite oxidation rate of 230 mg pyritic S/l per day.Dedicated to Prof. Dr. H. Jüntgen on the occasion of his 60th birthday  相似文献   

3.
Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS2) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferrooxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the “indirect” mechanism. Mixed cultures of three isolates (strains T-21, T-23, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T-23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.  相似文献   

4.
The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (i) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (ii) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Mechanism of Bacterial Pyrite Oxidation   总被引:14,自引:1,他引:13       下载免费PDF全文
The oxidation by Ferrobacillus ferrooxidans of untreated pyrite (FeS(2)) as well as HCl-pretreated pyrite (from which most of the acid-soluble iron species were removed) was studied manometrically. Oxygen uptake was linear during bacterial oxidation of untreated pyrite, whereas with HCl-pretreated pyrite both a decrease in oxygen uptake at 2 hr and nonlinear oxygen consumption were observed. Ferric sulfate added to HCl-pretreated pyrite restored approximately two-thirds of the decrease in total bacterial oxygen uptake and caused oxygen uptake to revert to nearly linear kinetics. Ferric sulfate also oxidized pyrite in the absence of bacteria and O(2); recovery of ferric and ferrous ions was in excellent agreement with the reaction Fe(2)(SO(4))(3) + FeS(2) = 3FeSO(4) + 2S, but the elemental sulfur produced was negligible. Neither H(2)S nor S(2)O(3) (2-) was a product of the reaction. It is probable that two mechanisms of bacterial pyrite oxidation operate concurrently: the direct contact mechanism which requires physical contact between bacteria and pyrite particles for biological pyrite oxidation, and the indirect contact mechanism according to which the bacteria oxidize ferrous ions to the ferric state, thereby regenerating the ferric ions required for chemical oxidation of pyrite.  相似文献   

6.
7.
We compared the response at neutral pH of some denitrifiers to different electron donors such as reduced sulfur (pyrite, S(0), and marcasite) and reduced Fe. Chemolithoautotrophic oxidation of pyrite with nitrate as electron acceptor was not possible when the pyrite was in a pure crystalline form, whereas oxidation of synthesized FeS2 of low crystallinity and of S(0) with nitrate as electron acceptor was possible. Neither nitrite nor sulfate was formed when Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 was tested. Microbial reduction of nitrate appears to be induced via S oxidation but not via Fe oxidation.  相似文献   

8.
Chemical and biological pathways in the bacterial oxidation of arsenopyrite   总被引:2,自引:0,他引:2  
Abstract: A moderately thermophilic mixed culture of bacteria catalysed the oxidative solubilization of arsenopyrite to give Fe(III), S(VI) and As(V). Toxic effects were observed in a few experiments due to teh build-up of As(III). The bacterial oxidation of arsenopyrite involved direct attack of the bacteria on the mineral to give AS(III). Subsequent oxidation of AS(III) to AS(V) occurred reaction with FE(III), but only in the presence of pyrite, which provide a catalytic surface. Arsenopyrite was unable to act as a catalyst. The pyrite- catalysed oxidation of As(III) to AS(V) by FE(III) usually only went to completion in the presence of bacteria, possibly due to their role in the provision of clean catalytic surfaces. Thus, toxic concentrations of As(III) may accumulate in reactors during the bacterial oxidation of arsenopyrite due to the absence of pyrite or a clean pyrite surface or to low concentrations of the effective oxidizing agent, Fe(III).  相似文献   

9.
We have recently reported the development of an efficient, whole-cell process for chemoenzymatic production of key chiral intermediates in statin synthesis by employing high-density Escherichia coli culture with the overexpressed deoxyribose-5-phosphate aldolase (DERA). The optically pure, 6-substituted cyclic hemiacetals can be used for the synthesis of atorvastatin, rosuvastatin and pitavastatin using further chemical steps. All of the synthetic routes established to date begin with a regiospecific oxidation of these lactol intermediates into the corresponding lactones, followed by several steps yielding 6-substituted, open-chain or lactonized derivatives which can be coupled by various approaches with the heterocyclic part of the statin molecule. Here we report for the first time the use of PQQ-dependent glucose dehydrogenases for a highly efficient, regioselective oxidation of artificial, derivatized aldohexoses, more specifically, the statin lactol intermediates. First, PQQ-dependent dehydrogenases of both soluble and membrane-bound type were characterized for their activity toward various DERA-derived lactols. Further, we describe a highly productive whole-cell system for oxidation of these 2,4-dideoxyaldopyranoses using a PQQ-dependent glucose dehydrogenase (Gcd) overexpressed in E. coli while taking advantage of the respiratory chain as the mediator of the electron transfer to oxygen. Finally, a two-step artificial biosynthetic pathway was developed by unleashing the intrinsic genetic potential of E. coli. The combined overexpression of the endogenous DERA and the membrane-bound, PQQ-dependent glucose dehydrogenase, the latter being coupled to the respiratory chain, allows direct biosynthesis of 6-substituted lactones in a highly productive, high-yield, cost-effective and industrially scalable process.  相似文献   

10.
The kinetics of pyrite oxidation by Metallosphaera sedula were investigated with mineral pyrite and two coals with moderate (Pittsburgh no. 8) and high (New Brunswick, Canada) pyritic sulfur content. M. sedula oxidized mineral pyrite at a greater rate than did another thermophile, Acidianus brierleyi, or a mesophile, Thiobacillus ferrooxidans. Maximum rates of coal depyritization were also greater with M. sedula, although the magnitude of biological stimulation above abiotic rates was notably less than with mineral pyrite. Coal depyritization appears to be limited by the oxidation of pyrite with ferric ions and not by the rate of biotic oxidation of ferrous iron, as evidenced by the maintenance of a high ratio of ferric to ferrous iron in solution by M. sedula. Significant precipitation of hydronium jarosite at elevated temperature occurred only with New Brunswick coal.  相似文献   

11.
During the bacterial oxidation of a pure pyrite by Thiobacillus ferrooxidans, a great number of corrosion tunnels appear that are easily revealed by scanning electron microscopy observations. This involves an increase in the surface area without significant granulometric reduction of mineral grains. Thus, the evaluation of intragranular porosity, determined by elution front analysis, allows one to estimate accurately the fraction of oxidized sulphide, because of the development of deep holes (propagating pore mechanism). After 60 days of bioleaching, the intragranular porosity represents about 34% of the initial sulphide volume, which corresponds to 25 km of tunnels (2 mum i.d.) per gram of pyrite. On other hand, the granulometric reduction ( approximately 7%) is responsible for a 23% decrease of the initial sulphide volume. The elution front analysis appears as a nondestructive method for measuring the intragranular porosity of the bioleached pyrite.  相似文献   

12.
Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite.  相似文献   

13.
A correlation was observed between the rate of oxidation of pure sulfide minerals (pyrite, pyrrhotite, and arsenopyrite) by communities of acidophilic chemolithotrophic microorganisms (ACM) and the mineral substrate where these communities were formed. The ACM community formed during continuous oxidation of the pyrite-arsenopyrite ore concentrate (Kyuchus deposit) exhibited the highest rate of pyrite oxidation. The highest rate of pyrrhotite oxidation was observed for the ACM community developed during semicontinuous oxidation of the pyrrhotite-containing pyrite-arsenopyrite ore concentrate (Olympiadinskoe deposit), by the communities isolated from the pyrrhotite concentrate, and ore of the Shanuch deposit. In the case of arsenopyrite oxidation, the ACM community isolated during oxidation of the Olympiadinskoe ore concentrate grew without a lag phase. Other communities commenced arsenopyrite oxidation at various rates only after a two-day lag phase. The similarity of the mineralogical characteristics of pure sulfide minerals with those of the minerals in the substrates where the ACM communities developed may affect the rates of oxidation.  相似文献   

14.
Leaching of various types of ores, containing 12–30% manganese, by the thiobacterium Acidithiobacillus ferrooxidans was studied. Leaching of reduced ores (manganocalcite and manganiferous limestone) was mediated mainly by degradation of manganiferous minerals (by sulfuric acid produced in the course of bacterial oxidation of pyrite or sulfur). Bacterial treatment of the ores for 144 and 192 h allowed solubilization of 96–98% of manganese. Inoculation of bacteria into pulp with pyrite increased the rate of leaching of oxide ore (psilomelane) by 37%, and the degree of its extraction within 180 h increased from 80 to 97%.  相似文献   

15.
Microbial desulfurization of coal by pyrite oxidizing bacterial enrichment cultures has been studied in air-agitated slurry reactors of 4- and 20-L volumes. Batch experiments showed that inoculation with an active bacterial culture is essential to minimize the lag phase, although a considerable number of pyrite oxidizing bacteria was found on the coal prior to desulfurization. For detailed investigations of kinetics, energy requirements, and technical applicability, a bioreactor equipment consisting of a cascade of eight stages was developed and operated continuously. Microbial desulfurization of coal-monitored by measuring the axial profile of dissolved iron concentration, real and maximum oxygen consumption rates, and cell concentration-at pulp densities to 30% was performed over a period of 200 days without any disturbances concerning the aeration system, fluidization, transport of solids and microbial growth. At a pulp density of 20%, a pyrite conversion of 68% was achieved after the third reactor stage at a total residence time of five days in the first three stages. The kinetics of pyrite degradation were found to be well described by a rate equation of first order in pyrite surface area concentration if the pyrite is directly accessible for microbial attack. Rate constants were determined to 0.48 mg pyrite/(cm(2) day) in the first and to 0.24 mg pyrite/(cm(2) day) in the following reactor stages. Kinetic models taking into account adsorption/desorption as well as growth kinetics failed to describe the observed reaction rates. However, a model treating pyrite degradation and microbial growth kinetics formalistically seems to be applicable when backmixing between the reactor stages can be avoided. The advantage of a multistage reactor in comparison to single-stage equipment was shown by calculation. To obtain a pyrite conversion of 68%, a three-stage reactor would require only 58% of the volume of single-stage equipment.Measurement of oxygen consumption rates proved to provide quickly and easily measurable parameters to observe microbial coal desulfurization in technical scale: the real oxygen consumption rate is correlated to the pyrite oxidation rate and the maximum oxygen consumption rate is correlated to the concentration of viable cells. The Y(o/s) coefficient for the amount of oxygen consumed per mass unit of pyrite oxygen was determined to approximately 0.33 in comparison to 1.0 which can be calculated from stoichiornetry. This could yet not be explained. Chemical leaching experiments as well as sulfur analyses of desulfurized coal samples showed that the microorganisms play the main role in degradation of pyrite from coal and that pyrite oxidation by ferric iron can be neglected.  相似文献   

16.
Abstract The acidophilic thermophilic archaebacteria Sulfolobus and Acidianus have the potential for applid use in the recovery of metal values from ores through the process of baterial leaching. These microbes readily adapt to the conditions of low pH and high concentrations of metals required for bacterial leaching. In addition, these archaebacteria can exist at high temperatures which can occur during the oxidation of metal sulfides in bioleaching reactors. The acidophilic of copper and molybdenum from chalcopyrite and molybdenite minerals, respectively. The microbes can also enhance the recovery of gold by oxidation of pyrite which occludes gold preventing recovery by standard metallurgical procedures. The ability of this group of microbes to facilitate metals recovery is yet to be developed on a commercial scale.  相似文献   

17.
Thiobacillus ferrooxidans was cultivated on 100-nm-thick synthetic pyrite (FeS2) films. The steps of biooxidation were studied with high-resolution transmission electron microscopy. The crystallized sulfide was transformed into colloidal sulfur (4–70 nm, depending on the age of the cell and the degree of substrate oxidation; 70nm initially and 4nm after oxidation of the pyrite substrate), which was taken up and distributed over an organic capsule around the bacteria. This colloidal sulfur acted as intermediate energy storage and was transferred by contact to daughter cells not directly attached to the sulfide substrate.  相似文献   

18.
19.
The effect of carbon nanomaterials (carbon nanotubes, thermally expanded and pyrolytic graphite) on the bioelectrochemical activity of Gluconobacter oxydans bacterial cells was studied during sorption contact with nanomaterials. For bacterial immobilization, the surface of a working bioelectrode was modified via the application of bacterial suspension in the studied nanomaterial and chitosan. The bioelectrochemical electrode characteristics (the amplitude of generated potential, cyclic volt–ampere characteristics, resistance) were estimated before and in the process of bacterial interaction with ethanol (3-electrode measurement scheme). Modification of the spectral graphite electrode by carbon nanotubes allowed a decrease in the resistance of the charge transfer by 48% and an increase in the oxidation current on cyclic volt—ampere characteristics at a voltage of 200 mV by 21% as compared with nonmodified electrode. The thermally expanded and pyrolytic graphite increased the bioelectrode resistance to 4050 and 8447 Ohm cm2, respectively. Mathematical modeling demonstrated that from 75 to 100% of biomaterial (depending on the used nanomaterial) were involved in the process of electricity generation with the selected method of the bacterial immobilization. The use of data obtained during the development of microbial biosensors and electrodes of biofuel cells is discussed.  相似文献   

20.
Comparison of Acidithiobacillus ferrooxidans strains TFV-1 and TFBk with respect to their capacity to oxidize pyrite 1, with an electron-type (n-type) conductivity, or pyrite 2, with hole-type (p-type) conductivity, showed that, at a pulp density of 1%, both before and after its adaptation to the pyrites, strain TFBk, isolated from a substrate with a more complex mineral composition, grew faster and oxidized the pyrites of both conductivity types more efficiently than strain TFV-1, which was isolated from a mineralogically simple ore. At a pulp density of 3–5%, the oxidation of pyrite 2 by strain TFV-1 and both of the pyrites by strain TFBk began only after an artificial increase in Eh to 600 mV. If the pulp density was increased gradually, strain TFBk could oxidize the pyrites at its higher values than strain TFV-1, with the rate of pyrite 2 oxidation being higher than that of pyrite 1. During chemical oxidation of both of the pyrites, an increase was observed in the absolute values of the coefficients of thermoelectromotive force (KTEMF); during bacterial-chemical oxidation, the KTEMF of pyrite 1 changed insignificantly, whereas the KTEMF of pyrite 2 decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号