首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D-aspartic acid in purified myelin and myelin basic protein   总被引:4,自引:0,他引:4  
The presence of the biologically uncommon D-isomer of aspartic acid in the white matter of human brains has been reported previously from this laboratory (1). We now report that the level of D-aspartate in human brains is higher in purified myelin than in white matter and is even higher in the myelin basic protein fraction. There also appears to be a difference in the level of D-aspartate found in human brain as compared to bovine brain, possibly a species or age-related difference.  相似文献   

2.
The levels of a glycoprotein reactive with monoclonal antibody (MAb) 44D10 in white and gray matter from brains of victims of several neurological diseases, including Multiple Sclerosis, Alzheimer's, Parkinson's and Huntington's diseases, were compared to that of normal individuals. The concentration of antigen reactive with MAb 44D10 was elevated in both gray and white matter of all MS brains examined, but not in brains with other neurological diseases. The increase in the concentration of antigen varied amongst the MS brains, such that the levels of antigen were only slightly increased in 2 of the 6 MS brains whereas 2 to 4 fold higher levels were found in the other 4 brains. Increased levels of antigen were detected in gray matter of MS brains, whereas this antigen was either not detected or present in very low levels in gray matter homogenates prepared from agematched normal brains. MAb Leu 1, which reacts with T lymphocytes, was not absorbed by normal and MS brain tissue suggesting the increase in antigen reactive with MAb 44D10 in MS brain homogenates was not associated with non-specific infiltration by T lymphocytes. Comparison of the purified antigen from MS gray matter and normal white matter by gel electrophoresis demonstrated that MAb 44D10 was reacting with a similar protein in both tissues with an apparent molecular weight of 80K. We have named this molecule P-80 glycoprotein.  相似文献   

3.
The concentration of manganese per gram dry tissue weight was determined in samples from 39 areas of 8 normal human brains. Manganese was shown to be unevenly distributed with the largest concentrations in the pineal gland and the olfactory bulb. The gray matter yielded a higher content of manganese than the white matter. Significant differences between individuals were found for identical areas of the gray and white matter of the cerebral cortex. Higher levels of manganese were demonstrated in the tail of the caudate nucleus than in the body and the head of the same structure. No significant correlation was shown between the amount of manganese in brain and age.  相似文献   

4.
Atomic absorption spectroscopy was used for measuring the zinc content, in ppb (μg/1), of brain tissue. A new method for determining the correction factor of atomic absorption interference is described. Measurements of the zinc content of twenty-four regions of adult human brains showed the maximum zinc content in resistent sector and endplate of the Amnion's horn, corroborating the histochemical data. The distribution of zinc in other regions was relatively uniform, but white matter showed lower values than gray matter. The zinc content of seventeen regions of human newborn brains was below that in adult brains, for all regions. The blood content of brain tissue contributed only insignificantly to its zinc content.  相似文献   

5.
Eight elements (i.e. K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) were measured in 50 different regions of 12 normal human brains by particle-induced X-ray emission (PIXE) analysis. The dry weight concentrations of K, Fe, Cu, Zn, Se, and Rb were consistently higher for gray than for white matter areas. The K, Zn and Se concentrations for the regions of mixed composition and, to some extent, also the Rb concentrations, were intermediate between the gray and white matter values, and they tended to decrease with decreasing neuron density. The mean dry weight concentrations of K, Ca, Zn, Se, and Rb in the various brain regions were highly correlated with the mean wet-to-dry weight ratios of these regions. For Mn, Fe, and Cu, however, such a correlation was not observed, and these elements exhibited elevated levels in several structures of the basal ganglia. For K, Fe, and Se the concentrations seemed to change with age. A hierarchical cluster analysis indicated that the structures clustered into two large groups, one comprising gray and mixed matter regions, the other white and mixed matter areas. Brain structures involved in the same physiological function or morphologically similar regions often conglomerated in a single subcluster.  相似文献   

6.
Recent brain research reveals a major role of trace elements in various diseases such as multiple sclerosis, Alzheimer's and Wilson's disease. The majority of published tissue concentrations dates back decades, and was assessed with various methods. Little is known about hemispherical differences, the correlation of trace elements or age-dependent changes in the human brain. Thus, the aim of this study was to examine trace element concentrations in different human brain regions after whole brain formalin fixation.549 samples of 13 brain regions were investigated in 11 deceased subjects without known history of brain pathology. Regional wet-to-dry mass ratios and concentrations of iron, copper, magnesium, manganese, calcium and zinc were determined using inductively coupled plasma mass spectrometry.Cortical gray matter revealed higher water content (wet-to-dry mass ratios 5.84–6.40) than white matter regions (wet-to-dry mass ratios 2.95–3.05). Element concentrations displayed specific regional differences. Good linear correlation of concentrations between elements was found for iron/copper as well as for manganese/magnesium (Spearman's rank correlation coefficient 0.74 and 0.65, respectively). Significant inter-hemispherical differences were found for copper in occipital white matter, for magnesium and calcium in putamen and for iron and copper in temporal white matter. An age dependent increase was seen in cortical gray matter for calcium, for magnesium in all regions except in cortical gray matter, for copper in substantia nigra and for zinc in occipital cortex.The presented trace element concentrations can serve as a fundamental basis for further brain research. Wet-to-dry mass ratios allow a comparison with reference data from other studies.  相似文献   

7.
1. This paper is the first report on the presence of D-aspartate oxidase activity and free D-aspartate in the amphibian tissues. 2. The presence of D-aspartate oxidase activity in tissues of clawed toad (Xenopus laevis) and Japanese newt (Cynops pyrrhogaster) was demonstrated by requirements for enzyme activity, selective inhibition with meso-tartrate and substrate specificity. 3. In each animal, the highest activity was found in kidney, followed by liver and brain, and no gender difference in the specific activity was observed in each tissue. 4. A small but significant amount of D-aspartate was detected in liver and kidney, irrespective of species. 5. In the newt, there was a gender difference in the hepatic and renal content of D-aspartate and not in the D-/D+L-aspartate ratio.  相似文献   

8.
Two highly sensitive techniques were used to identify glycoproteins and proteins in several tissue fractions from two normal brains and five brains from multiple sclerosis (MS) patients. Comparison of glycoproteins and proteins in white and gray matter, myelin and a myelin-related fraction between normal and MS brains not only showed the presence in all fractions of many more minor components than has previously been reported, but also subtle differences in some of these components. However, no change was unequivocally MS-specific. This provides additional evidence that MS is a demyelinating rather than a dysmyelimating disorder and may lead to some insight into the etiology and/or progression of this disease. Moreover, this study has served to characterize further the proteins and glycoproteins of human brain tissue.  相似文献   

9.
Lipid Compositions of Different Regions of the Human Brain During Aging   总被引:8,自引:3,他引:5  
The neutral and phospholipid compositions of various regions of the human brain were analyzed using autopsy material covering the life period between 33 and 92 years of age. The protein content was also measured and, on a weight basis, this content is unchanged in the cerebellum, pons, and medulla oblongata, whereas in the 90-year-old group it decreases in the hippocampus, gray matter, and nucleus caudatus. In white matter, the protein content decreases continuously with age. The phospholipid composition is characteristic of the region investigated, but remains unchanged during aging. The total phospholipid content exhibits only a 5-10% decrease in the oldest age group. The content of dolichol and its polyisoprenoid pattern are also characteristic of the region analyzed. Between 33 and 92 years of age, the amount of dolichol in all portions of the brain increases three- to fourfold, but the isoprenoid pattern remains constant. The level of dolichyl-P varies between different regions, but only a moderate increase is seen with age. Ubiquinone content is highest in the nucleus caudatus, gray matter, and hippocampus, and in all areas this content is decreased to a great extent in the oldest age groups. All regions of the human brain are rich in cholesterol, but alterations in the amount of this lipid are highly variable during aging, ranging from no change to a 40% decrease.  相似文献   

10.
Dolichol in Human Brain: Regional and Developmental Aspects   总被引:3,自引:2,他引:1  
Distinct regional differences in dolichol content were defined in human brain from 15 to 76 years of age. Concerning the regional distribution of dolichol, levels were: higher in cortical gray matter than in subcortical white matter, highest among cortical regions in temporal gray matter, highest among all brain regions in thalamus, and lowest among all brain regions in lower brain stem and spinal cord. The developmental changes in the contents of dolichol were found to be different among brain regions. For example, among regions with the highest levels of dolichol, in thalamus there was a six to sevenfold increase, but in parietal gray matter, only a 2.5-fold increase. Regional and developmental changes in the proportions of the individual molecular species (isoprenologues) of dolichol were also observed. The findings indicate that the metabolism of dolichol is not uniform among regions of developing and aging human brain and may have implications for the role of dolichol in normal and diseased human brain.  相似文献   

11.
This work provides direct evidence that sustained tensile stress exists in white matter of the mature mouse brain. This finding has important implications for the mechanisms of brain development, as tension in neural axons has been hypothesized to drive cortical folding in the human brain. In addition, knowledge of residual stress is required to fully understand the mechanisms behind traumatic brain injury and changes in mechanical properties due to aging and disease. To estimate residual stress in the brain, we performed serial dissection experiments on 500-mum thick coronal slices from fresh adult mouse brains and developed finite element models for these experiments. Radial cuts were made either into cortical gray matter, or through the cortex and the underlying white matter tract composed of parallel neural axons. Cuts into cortical gray matter did not open, but cuts through both layers consistently opened at the point where the cut crossed the white matter. We infer that the cerebral white matter is under considerable tension in the circumferential direction in the coronal cerebral plane, parallel to most of the neural fibers, while the cerebral cortical gray matter is in compression. The models show that the observed deformation after cutting can be caused by more growth in the gray matter than in the white matter, with the estimated tensile stress in the white matter being on the order of 100–1,000 Pa.  相似文献   

12.
We report a novel staining technique for human brain slices that distinguishes clearly gray from white matter. Previously described techniques using either Prussian blue (Berlin blue) or phthalocyanine dyes usually have included a hot phenol pretreatment to prevent white matter staining. The technique we describe here does not require hot phenol pretreatment and allows the use of brains stored for postmortem periods of one to two years prior to staining. Our technique involves staining with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt 1% in water for 2 h followed by acetic acid treatment; this produces excellent blue staining of gray matter with little white matter staining. The stained brain slices are excellent for teaching human brain anatomy and/or pathology, or for research purposes.  相似文献   

13.
《Gender Medicine》2012,9(1):44-55
Structural magnetic resonance imaging studies provide evidence for sex differences in the human brain. Differences in surface area and the proportion of gray to white matter volume are observed, in particular in the parietal lobe. To our knowledge, no studies have examined sex differences in parietal lobe structure in younger populations or in the context of development. The present study evaluated sex differences in the structure of the parietal lobe in children aged 7 to 17 years. In addition, by adding a cohort of previously studied adults aged 18 to 50 years, sex differences in parietal lobe structure were examined across the age span of 7 to 50 years. Compared with the adult sample, the younger sample showed that the ratio of parietal lobe cortex to white matter was greater in female brains, but no sex differences in surface area. When examining the effects of age, surface area exhibited a significant sex-age interaction. In male brains, there was essentially no decrease in surfaces area over time, whereas in female brains, there was a significant decrease in surface area over time. These findings support the notion of structural sex differences in the parietal lobe, not only in the context of cross-sectional assessment but also in terms of differences in developmental trajectories.  相似文献   

14.
Although the most prominent acute and chronic effect of alcohol ingestion in man is alteration of brain function, metabolism of ethanol by human brain has not been documented. This study was designed to detect and localize a new family of nonoxidative ethanol metabolites, fatty acid ethyl esters, in human brain and characterize their synthetic pathways. Fatty acid ethyl ester synthase activity was present in 10 different locations in human brain, with gray matter containing more activity than white matter (0.53 nmol of ethyl oleate/mg of protein/h and 0.25 nmol of ethyl oleate/mg of protein/h, respectively). Two forms of this synthase, present in cytosol or loosely bound to membrane fractions, were isolated from human gray and white matter and then partially purified by ion-exchange chromatography. Both were active at low ethanol concentrations easily attained in vivo in man. Importantly, fatty acid ethyl esters were also detected in brains of individuals dying while intoxicated; only small amounts were present in control subjects at autopsy. Thus, alcohol metabolism in human brain has been documented for the first time by identifying both fatty acid ethyl esters and their synthases in this important target-organ of alcohol abuse.  相似文献   

15.
Astrocytes in primary culture possess a rapid L-aspartate saturable transport system (Km = 93 M; Vmax = 81 nmol/min/mg protein), which shows certain stereospecificity since Vmax was 36% lower for D-aspartate uptake. These are values obtained at short incubation time (15 seconds), to obtain approximate initial rate conditions. Metabolic energy inhibitors, rotenone and iodoacetate very potently inhibited the L- and D-aspartate uptake processes, indicating that the transport process is an active one. However, the accumulation of L-aspartate was "enhanced by inhibitors of L-aspartate metabolism, such as the aspartate aminotransferase inhibitor, aminooxyacetate and L-methionine sulfoximine, an inhibitor of glutamine synthetase, whereas D-aspartate (a non-metabolizable analog of L-aspartate) uptake was not affected. The accumulated levels of L-aspartate in the presence of aminooxyacetate were similar to the levels of D-aspartate. These effects of L-aspartate metabolic inhibitors, suggest that due to metabolism of the the L-aspartate, short incubation time (eg., 15 seconds) is necessary to measure the initial rate of L-aspartate uptake, in order to obtain the "true kinetic parameters.  相似文献   

16.
Oral administration of D-aspartate to mice for 2 weeks by addition of the amino acid to drinking water produced a nearly 4-fold increase in liver D-aspartate oxidase (EC 1.4.3.1) activity, whereas no increase was induced by L-aspartate administered in the same way. Administration of D-aspartate also produced a small significant increase in the kidney enzyme activity, but L-aspartate administration increased the activity as well. The enzyme activity in the brain and muscle was not affected by administration of either D- or L-aspartate. Intraperitoneal administration of D-aspartate increased the enzyme activity only in the liver, and other compounds tested, including D-glutamate and D-alanine, could not replace D-aspartate. The results indicate a specific relationship between D-aspartate and D-aspartate oxidase and suggest that the amino acid is, in fact, a physiological substrate of the enzyme.  相似文献   

17.
Copper concentration was determined in samples from 38 areas of 7 normal human brains. The grey matter contained higher concentrations of copper than the white matter. Identical areas of the grey and white matter of the cerebral cortex showed significant differences between individuals. In the caudate nucleus the highest concentrations of copper were found in the tail followed by the body and the head, respectively. A negative linear regression between age and brain copper levels was demonstrated.  相似文献   

18.
The purpose of this preliminary study was to test the hypothesis that subsyndromal depression is associated with the volume of medial prefrontal regional gray matter and that of white matter lesions (WMLs) in the brains of cognitively normal older people. We also explored the relationships between subsyndromal depression and medial prefrontal regional gray matter volume, limbic regional gray matter volume, and lobar WMLs in the brains of patients with mild cognitive impairment (MCI) and Alzheimer''s disease (AD). We performed a cross-sectional study comparing patients with subsyndromal depression and nondepressed controls with normal cognition (n = 59), MCI (n = 27), and AD (n = 27), adjusting for sex, age, years of education, and results of the Mini-Mental State Examination. Frontal WML volume was greater, and right medial orbitofrontal cortical volume was smaller in cognitively normal participants with subsyndromal depression than in those without subsyndromal depression. No volume differences were observed in medial prefrontal, limbic, or WML volumes according to the presence of subsyndromal depression in cognitively impaired patients. The absence of these changes in patients with MCI and AD suggests that brain changes associated with AD pathology may override the changes associated with subsyndromal depression.  相似文献   

19.
Dynamic responses of brain tissues are needed for predicting traumatic brain injury (TBI). We modified a dynamic experimental technique for characterizing high strain-rate mechanical behavior of brain tissues. Using the setup, the gray and white matters from bovine brains were characterized under compression to large strains at five different strain rates ranging from 0.01 to 3000/s. The white matter was examined both along and perpendicular to the coronal section for anisotropy characterization. The results show that both brain tissue matters are highly strain-rate sensitive. Differences between the white matter and gray matter in their mechanical responses are recorded. The white matter shows insignificant anisotropy over all strain rates. These results will lead to rate-dependent material modeling for dynamic event simulations.  相似文献   

20.
This study attempts to determine if L-glutamate and/or L-aspartate may be transmitters of dorsal sensory neurons. The uptake and the electrically evoked release of D-[3H]aspartate, a putative marker for L-glutamate and L-aspartate, were measured in the cervical enlargement (segments C4-T1) of the guinea pig spinal cord before and after cutting dorsal roots C5-T1 on the right side. The uptake and the release of gamma-aminobutyric acid (GABA) also were measured as indices of the integrity of GABAergic neurons in the spinal cord. The cervical enlargement was excised and divided into left and right halves, then into dorsal and ventral quadrants. Quadrants from unlesioned animals took up D-aspartate and GABA, achieving concentrations in the tissues which were 14-25 times that in the medium. Subsequently, electrical stimulation evoked a Ca2+-dependent release of D-aspartate and of GABA. The uptake and release of D-aspartate and GABA were similar in tissues taken from intact and sham-operated animals. However, dorsal rhizotomy, without damage to dorsal radicular or spinal blood vessels, depressed the uptake (by 22-29%) and the release (by 50%) of D-aspartate only in quadrants ipsilateral to the lesion. The uptake and the release of GABA were unchanged. In transverse sections of the cervical enlargement, stained to reveal degenerating fibers, by far the heaviest loss of axons occurred in the cuneate fasciculus and in the gray matter ipsilateral to the cut dorsal roots. These findings suggest that the synaptic endings of dorsal sensory neurons probably mediate the uptake and the release of D-aspartate and, therefore, may use L-glutamate or L-aspartate as a transmitter. When spinal blood vessels were damaged during dorsal rhizotomy, the deficits in D-aspartate uptake and release were larger than those in the absence of vascular damage and were accompanied by deficits in GABA uptake and release. These findings imply that vascular damage results in the loss of intraspinal neurons, some of which probably mediate the uptake and release of D-aspartate and, therefore, may use L-glutamate and/or L-aspartate as a transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号