首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse skeletal muscle following addition of respiratory substrate. This endogenous activation increased with time, required a high membrane potential and was diminished by high concentrations of serum albumin. Inhibition of this endogenous activation by GDP [classically considered specific for UCPs (uncoupling proteins)], carboxyatractylate and bongkrekate (considered specific for the adenine nucleotide translocase) was examined in skeletal muscle mitochondria from wild-type and Ucp3-knockout mice. Proton conductance through endogenously activated UCP3 was calculated as the difference in leak between mitochondria from wild-type and Ucp3-knockout mice, and was found to be inhibited by carboxyatractylate and bongkrekate, but not GDP. Proton conductance in mitochondria from Ucp3-knockout mice was strongly inhibited by carboxyatractylate, bongkrekate and partially by GDP. We conclude the following: (i) at high protonmotive force, an endogenously generated activator stimulates proton conductance catalysed partly by UCP3 and partly by the adenine nucleotide translocase; (ii) GDP is not a specific inhibitor of UCP3, but also inhibits proton translocation by the adenine nucleotide translocase; and (iii) the inhibition of UCP3 by carboxyatractylate and bongkrekate is likely to be indirect, acting through the adenine nucleotide translocase.  相似文献   

2.
Enara Aguirre 《BBA》2010,1797(10):1716-1115
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12 mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.  相似文献   

3.
Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide translocase), thereby providing a negative feedback loop. The mechanism of activation and the conditions necessary to induce uncoupling by HNE are unclear. We have found that activation of proton leak by HNE in rat and mouse skeletal muscle mitochondria is dependent on incubation with respiratory substrate. In the presence of HNE, mitochondria energized with succinate became progressively more leaky to protons over time compared with mitochondria in the absence of either HNE or succinate. Energized mitochondria must attain a high membrane potential to allow HNE to activate uncoupling: a drop of 10-20 mV from the resting value is sufficient to blunt induction of proton leak by HNE. Uncoupling occurs through UCP3 (11%), ANT (64%) and other pathways (25%). Our findings have shown that exogenous HNE only activates uncoupling at high membrane potential. These results suggest that both endogenous HNE production and high membrane potential are required before mild uncoupling will be triggered to attenuate mitochondrial ROS production.  相似文献   

4.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

5.
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.  相似文献   

6.
C Valcarce  J M Cuezva 《FEBS letters》1991,294(3):225-228
2-h-old neonatal liver mitochondria, when depleted of adenine nucleotides, showed an 'ohmic' current-voltage relationship and a higher passive proton permeability of the membrane, resembling fetal mitochondrial behaviors for the proton conductance. Incubation of fetal mitochondria with ATP, GDP or carboxyatractyloside promoted a significant reduction in the passive proton permeability of the membrane and the appearance of the characteristic biphasic behavior for the proton conductance. It is concluded that the postnatal increase in intramitochondrial adenine nucleotide concentration promotes, by the interaction of the nucleotides with the adenine nucleotide translocase, the reduction in the passive proton permeability of the mitochondrial membrane, allowing efficient energy conservation in the neonatal liver.  相似文献   

7.
We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.  相似文献   

8.
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.  相似文献   

9.
Uncoupling proteins (UCPs) mediate fatty acid-induced proton cycling in mitochondria, which is stimulated by superoxide and inhibited by GDP. Fatty acid anions can also be transported by adenine nucleotide translocase (ANT), thus resulting in the uncoupling of oxidative phosphorylation. In the present work, an attempt was made to distinguish between the protonophoric activity of UCP3 and that of ANT using inhibition analysis. This study was carried out using mitochondria from skeletal muscles of hibernating Yakut ground squirrel, which have a significant level of UCP3 mRNA. We found that millimolar concentrations of GDP, which is considered to be a specific inhibitor of UCPs, slightly recoupled the mitochondrial respiration and restored the membrane potential. Addition of the specific ANT inhibitor CAT (carboxyatractylate), in micromolar concentration, prior to GDP prevented its recoupling effect. Moreover, GDP and ADP exhibited a competitive kinetic behavior with respect to ANT. In brown adipose tissue, CAT did not prevent the UCP1-iduced increase in chloride permeability and the inhibitory effect of GDP, thus confirming the inability of CAT to affect UCP1. These results allow us to conclude that the recoupling effect of purine nucleotides on skeletal muscle mitochondria of hibernating ground squirrels can be explained by interaction of the nucleotides with ANT, whereas UCP3 is not involved in the process.  相似文献   

10.
11.
Adenine nucleotide uptake was found to be lower in mitochondria from hepatoma 7777, 7800, and 9618A than in the host livers. Moreover, in the fast-growing hepatoma 7777 the sensitivity of the adenine nucleotide translocase to inhibition by carboxyatractylate and bongkrekic acid was considerably decreased. Purification of the ADP/ATP carrier from hepatoma 7777 mitochondria and its reconstitution into an artificial liposome system reversed the abnormal kinetics in that the adenine nucleotide uptake and response to inhibitors were identical in proteoliposome preparations from host liver and tumor mitochondria. Analysis of the lipids of the hepatoma inner mitochondrial membrane indicated considerable differences from normal in the levels of phospholipids and cholesterol. Most striking was the increase in cholesterol and sphingomyelin of the hepatoma 7777 inner membrane. An artificial liposome system containing cholesterol in addition to the standard phospholipids could produce alterations in kinetics of the purified ADP/ATP carrier from heart mitochondria similar to those seen in the hepatoma 7777. In general, these results support the suggestion that alterations in the lipid environment of the inner mitochondrial membrane rather than intrinsic changes in the carrier protein itself produce the aberrant observations of adenine nucleotide translocase activity in hepatoma mitochondria.  相似文献   

12.
Study of the uncoupling effect of various saturated fatty acids (from caprylic to palmitic) revealed that the glutamate recoupling effect was more pronounced in the case of short chain fatty acids, whereas recoupling of mitochondria by carboxyatractylate was more effective in the case of long chain fatty acids. The overall recoupling effect, however, did not depend on the fatty acid chain length. Besides carboxyatractylate, glutamate and aspartate also exhibited a recoupling effect under uncoupling by lauryl sulfate. The uncoupling effect of lauryl sulfate was markedly weaker in the presence of DNP or laurate (but not FCCP) which were added in concentrations causing twofold increase in mitochondrial respiration. In the presence of lauryl sulfate the uncoupling action of laurate and DNP was insensitive to carboxyatractylate and glutamate. With laurate and DNP as uncouplers increasing the pH from 7.0 to 7.8 potentiated the recoupling effect of carboxyatractylate and attenuated the recoupling effect of glutamate. In the case of uncoupling by lauryl sulfate similar changes in the recoupling effect of carboxyatractylate and glutamate were observed only in the presence of 10 microM tetraphenylphosphonium. Thus, when uncoupling is induced by fatty acids, DNP, and lauryl sulfate, the ADP/ATP and aspartate/glutamate antiporters function as two parallel and independent pathways for mitochondrial membrane potential dissipation. We suggest that the role of the ADP/ATP antiporter in uncoupling includes proton capture from the intermembrane space with subsequent protonation of uncoupler anions, their transport as neutral molecules on the internal side, and deprotonation followed by proton release into the matrix and transfer of the uncoupler anion in the reverse direction. During uncoupling the aspartate/glutamate antiporter cyclically carries the uncoupler anion with simultaneous proton transfer from the intermembrane space into the matrix.  相似文献   

13.
Carboxyatractylate inhibits the uncoupling effect of free fatty acids   总被引:2,自引:0,他引:2  
The ATP/ADP-antiporter inhibitors and ADP decrease the palmitate-induced stimulation of the mitochondrial respiration in the controlled state. The degree of inhibition decreases in the order: carboxyatractylate greater than bongkrekic acid, palmitoyl-CoA, ADP greater than atractylate. GDP is ineffective. The inhibiting concentration of carboxyatractylate coincides with this arresting the state 3 respiration. Carboxyatractylate inhibition decreases when the palmitate concentration increases. Stimulation of controlled respiration by FCCP or gramicidin D at any concentration of these uncouplers is carboxyatractylate-resistant, whereas that by low concentrations of DNP is partially suppressed by carboxyatractylate. These data together with observations that palmitate does not increase H+ conductance in bilayer phospholipid membranes and in cytochrome oxidase-asolectin proteoliposomes indicate that the ATP/ADP-antiporter is somehow involved in the uncoupling by low concentrations of fatty acids (or DNP), whereas that by FCCP and gramicidin D is due to their effect on the phospholipid bilayer. It is suggested that the antiporter facilitates translocation of palmitate anion across the mitochondrial membrane.  相似文献   

14.
Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.  相似文献   

15.
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed and replaced by a pupal epithelium at metamorphosis. To determine how oxidative phosphorylation is altered during the programmed death of the larval cells, top-down control analysis was performed on mitochondria isolated from the midguts of larvae before and after the commitment to pupation. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored to determine the kinetic responses of the substrate oxidation system, proton leak, and phosphorylation system to changes in the membrane potential. Mitochondria from precommitment larvae have higher respiration rates than those from postcommitment larvae. State 4 respiration is controlled by the proton leak and the substrate oxidation system. In state 3, the substrate oxidation system exerted 90% of the control over respiration, and this high level of control did not change with development. Elasticity analysis, however, revealed that, after commitment, the activity of the substrate oxidation system falls. This decline may be due, in part, to a loss of cytochrome c from the mitochondria. There are no differences in the kinetics of the phosphorylation system, indicating that neither the F(1)F(0) ATP synthase nor the adenine nucleotide translocase is affected in the early stages of metamorphosis. An increase in proton conductance was observed in mitochondria isolated from postcommitment larvae, indicating that membrane area, lipid composition, or proton-conducting proteins may be altered during the early stages of the programmed cell death of the larval epithelium.  相似文献   

16.
A palmitoyl CoA-protein complex was isolated from bovine heart mitochondria and purified to homogeneity. The elution profile of the [14C]palmitoyl CoA bound protein from a hydroxyapatite column was identical to that seen when [3H]carboxyatractylate was used as the bound ligand. A sample of the palmitoyl CoA-protein complex from a peak fraction of the column appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. The mobility of the protein bound with palmitoyl CoA was identical to the one bound with carboxyatractylate and the molecular weight was estimated to be 30,000 daltons. Compared to the stable palmitoyl CoA-protein complex, purification of the unliganded carrier from mitochondria at 22°C resulted in a disaggregated protein. These physical characteristics of the palmitoyl CoA-protein complex correspond to those identified for the ADPATP carrier. The results further confirm the specificity of the fatty acyl CoA ligand for the adenine nucleotide translocase and support the concept that it may be a physiological modulator of adenine nucleotide translocation.  相似文献   

17.
Translocation of precursor proteins across the cytoplasmic membrane in bacteria is mediated by a multi-subunit protein complex termed translocase, which consists of the integral membrane heterotrimer SecYEG and the peripheral homodimeric ATPase SecA. Preproteins are bound by the cytosolic molecular chaperone SecB and targeted in a complex with SecA to the translocation site at the cytoplasmic membrane. This interaction with SecYEG allows the SecA/preprotein complex to insert into the membrane by binding of ATP to the high affinity nucleotide binding site of SecA. At that stage, presumably recognition and proofreading of the signal sequence occurs. Hydrolysis of ATP causes the release of the preprotein in the translocation channel and drives the withdrawal of SecA from the membrane-integrated state. Hydrolysis of ATP at the low-affinity nucleotide binding site of SecA converts the protein into a compact conformational state and releases it from the membrane. In the absence of the proton motive force, SecA is able to complete the translocation stepwise by multiple nucleotide modulated cycles. Received: 4 August 1995 / Accepted: 9 October 1995  相似文献   

18.
Addition of bovine serum albumin to state 4 mitochondria results in a depression of the proton leak and of the resting respiration of 70 and 25%, respectively. The conductance membrane potential diagram, both in the ohmic and in the non-ohmic region, shows that in the presence of bovine serum albumin the level of ohmic conductance is lowered while that of non-ohmic conductance is increased toward higher delta psi values. The same effect is observed during operation of the different proton pumps. Addition of chloroform affects the conductance membrane potential diagram in the following manner: there is no effect in the ohmic region with all pumps, while there is an effect in the non-ohmic region either at site III or at sites II plus III but not at site II. This suggests a possible effect of chloroform at the level of the cytochrome oxidase proton pump. During titration with oligomycin of the ATPase proton pump the conductance potential diagram shows a region of non-ohmicity only in the presence but not in the absence of an ATP-regenerating system. Protonophoric uncouplers such as carbonyl cyanide p(trifluoromethoxy)phenylhydrazone and intrinsic uncouplers such as chloroform have different effects on the relationship between rates of charge translocation and of oxygen consumption, and thus on the pump stoichiometries, in that the slope of the diagram is modified by the latter but not by the former. The differential effects of protonophores and of intrinsic uncouplers on the stoichiometries have been analyzed by computer simulations and represent an additional criterion to distinguish between extrinsic and intrinsic mechanisms of uncoupling.  相似文献   

19.
The uncoupling protein (UCP) is uniquely expressed in brown adipose tissue, which is a thermogenic organ of mammals. The UCP uncouples mitochondrial respiration from ATP production by introducing a proton conducting pathway through the mitochondrial inner membrane. The activity of the UCP is regulated: nucleotide binding to the UCP inhibits proton conductance whereas free fatty acids increase it. The similarities between the UCP, the ADP/ATP carrier and the DNA recognition element found in the DNA binding domain of the estrogen receptor suggested that these proteins could share common features in their respective interactions with free nucleotides or DNA, and thus defined a putative 'nucleotide recognition element' in the UCP. This article provides demonstration of the validity of this hypothesis. The putative nucleotide recognition element corresponding to the amino acids 261-269 of the UCP was gradually destroyed, and these mutant proteins were expressed in yeast. Flow cytometry, measuring the mitochondrial membrane potential in vivo, showed increased uncoupling activities of these mutant proteins, and was corroborated with studies with isolated mitochondria. The deletion of the three amino acids Phe267, Lys268 and Gly269, resulted in a mutant where proton leak could be activated by fatty acids but not inhibited by nucleotides.  相似文献   

20.
1. The mechanism of adenine nucleotide translocation in mitochondria isolated from rat liver was further examined by using the local anaesthetics procaine, butacaine, nupercaine and tetracaine as perturbators of lipid-protein interactions. Each of these compounds inhibited translocation of ADP and of ATP; butacaine was the most effective with 50% inhibition occurring at 30mum for 200mum-ATP and at 10mum for 200mum-ADP. The degree of inhibition by butacaine of both adenine nucleotides was dependent on the concentration of adenine nucleotide present; with low concentrations of adenine nucleotide, low concentrations of butacaine-stimulated translocation, but at high concentrations (greater than 50mum) low concentrations of butacaine inhibited translocation. Butacaine increased the affinity of the translocase for ATP to a value which approached that of ADP. 2. Higher concentrations of nupercaine and of tetracaine were required to inhibit translocation of both nucleotides; 50% inhibition of ATP translocation occurred at concentrations of 0.5mm and 0.8mm of these compounds respectively. The pattern of inhibition of ADP translocation by nupercaine and tetracaine was more complex than that of ATP; at very low concentrations (less than 250mum) inhibition ensued, followed by a return to almost original rates at 1mm. At higher concentrations inhibition of ADP translocation resulted. 3. That portion of ATP translocation stimulated by Ca(2+) was preferentially inhibited by each of the local anaesthetics tested. In contrast, inhibition by the anaesthetics of ADP translocation was prevented by low concentrations of Ca(2+). 4. The data provide further support for our hypothesis that lipid-protein interactions are important determinants in the activity of the adenine nucleotide translocase in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号