首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

2.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   

3.
The biochemical and pharmacological properties of nuclear [3H]flunitrazepam in brain tissues were studied. Nuclear [3Hflunitrazepam binding is saturable for both central and peripheral binding sites. Inosine and hypoxanthine displace nuclear [3H]flunitrazepam binding with greater potency than the membrane [3H]flunitrazepam binding. Triiodothyronine (T3) increases the maximum number of binding sites (Bmax) of nuclear [3H]flunitrazepam binding in vitro while thyroxine (T4) does not have any effect. Diazepam reduces the affinity of nuclear125I-T3 binding in vitro, while the Bmax is not affected significantly. Mild digestion of chromatin, using micrococcal nuclease, reveals that a major portion of nuclear [3H]flunitrazepam binding sites are located on chromatin. These data suggest a functional role for nuclear benzodiazepine binding and a possible modulatory effect of benzodiazepines on T3 binding with its nuclear receptors.  相似文献   

4.
[3H] Leukotriene B4 (LTB4) binds concentration dependency to intact human polymorophonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4°C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 × 10−9M and Bmax of 1.96 × 104 sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 × 10−9M and a Bmax of 45.6 × 104 sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25°C[3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   

5.
Preliminary studies indicate the presence of PGF specific binding sites in membrane fractions prepared from equine corpora lutea. The equilibrium binding data indicate an apparent dissociation constant of 3.2 × 10?9M and the concentration of binding sites of ~0.1 pmoles/mg membrane protein. Competition of several natural prostaglandins for equine luteal PGF specific binding sites indicates specificity for the 9α-hydroxyl moiety and the 5,6-cis doublebond. Significant increases in relative binding affinities were demonstrated for PGF analogs with a phenyl ring introduced at carbons 16 or 17. Specific PGF binding was demonstrated in corpora lutea collected at known stages of the estrous cycle. There was no pattern in these values based on the stage of the cycle. While specific 3H-PGE1 binding could be demonstrated, no high affinity sites could be quantitated. 3H-PGE1 binding appeared unaffected by changes in temperature or time of incubation, whereas PGF specific binding was significantly modified by both these factors.  相似文献   

6.
Abstract

The present investigation attempted to differentiate haloperidol-sensitive sigma sites (σH) from phencyclidine (PCP) binding sites in rat brain membranes. We studied the effects of several cations at physiologically relevant concentrations on the binding of radioligands selective for σH sites ([3H]haloperidol, [3H](+)3-PPP**), and [3H](+)SKF10,047), or for PCP sites ([3H]PCP and [3H]TCP). The PCP sites displayed a markedly greater sensitivity to cations than σH sites. This property was reflected by a greater extent of inhibition of the binding of PCP-selective relative to σH-selective ligands at a given cation concentration, as well as by lower IC50's and by steeper slopes of the cation dose-response curves. Divalent cations were approximately 100 times more potent than monovalent cations. All cations were inhibitory, except Sr2+ and Ba2+ which, at micromolar concentrations, enhanced PCP binding but not σsH binding. Thus, PCP-selective sites appeared to be distinct from σH sites with regards to several aspects of cation modulation. This is consistent with the view that PCP and σH sites are distinct molecular entities. Further, the marked cation sensitivity of the PCP site is consistent with the current hypothesis according to which the PCP site is linked to the N-methyl-D-aspartate (NMDA) receptor-cation channel complex.  相似文献   

7.
Abstract: The regional distribution of inositol 1,4,5-trisphosphate (InsP3), inositol 1,3,4,5-tetrakisphosphate (InsP4), and ryanodine binding sites has been characterised and compared in the rat brain using radioligand binding assays. Cortical [3H]InsP3 binding indicated similar positional and stereospecificity as observed in other tissues, with 100-fold selectivity for lnsP3 over InsP4. Similarly, high-affinity [32P]InsP4 binding also showed a high degree of positional specificity, with a 1,000-fold selectivity for InsP4 over InsP3. Initial characterisation of [3H]ryanodine binding to cortical membranes demonstrated that specific binding was highly dependent on high salt and micromolar Ca2+ concentrations and inhibited by Ca2+ levels of >1 mM. [3H]-Ryanodine binding was also enhanced by β,γ-methylene-adenosine 5′-trisphosphate and caffeine and inhibited by magnesium and ruthenium red (Ki= 0.81 μM). However, dantrolene (300 μM) was ineffective on the binding. Therefore, although the results indicate a greater similarity to the binding properties of the Ca2+-induced Ca2+ release channel isoform present in skeletal, rather than cardiac, muscle, it does not appear to be identical. Detailed binding analysis of ryanodine and polyphosphate sites, with the exception of ruthenium red, indicated no interaction between binding sites. Ruthenium red markedly enhanced the binding of both [3H]InsP3 and [32P]InsP4, an effect most probably due to nonspecific complex formation. Regional binding of InP3, InsP4, and ryanodine in the rat brain was of similar affinity for each ligand in each area, but the density profile for each ligand was clearly different. The highest density of InsP3 sites was in the cerebellum, whereas the highest density of ryanodine sites was in the hippocampus. High-affinity InsP4 sites showed less regional diversity, with highest densities in the cerebellum, cortex, and hippocampus. However, in each area studied the density of sites followed the order InsP3 > InsP4 > ryanodine.  相似文献   

8.
The binding of [3H]ploridzin by isolated luminal membranes of the rabbit proximal tubule and by slices of rabbit kidney cortex was studied.Kinetic analyses of the relationship between the concentration of phloridizin in the incubation medium and the binding of phloridzin to the membrane indicated two distinct classes of receptors sites. One class, comprising high affinity sites, reached saturation at 20–25 μM phloridzin, had a K(phloridzin) of 8 μM, and 8·10+2 nmoles interacted with 1 mg of brush border protein. The other class, comprising low affinity sites, had a K(phloridzin) of 2.5 mM, and the number of binding sites was 1.25 nmoles/mg Na+ was required for the binding of phloridzin at the high affinity sites. Na+ decreased the apparent Ki for phloridzin; the apparent V of binding was not altered. Binding at the low affinity sites was independent of Na+. Ca2+ was necessary for maximal binding at the high affinity sites. Binding of phloridzin at high affinity sites was more sensitive to N-ethylmalcimide and mersalyl than was binding at low affinity sites. Binding at high affinity sites, but not at low affinity sites, was temperature dependent.d-Glucose was a competitive inhibitor of the high affinity binding of phloridzin. The apparent K1 was 1 mM. D-Glucoe inhibited non-competitively at the low affinity sites. l-Glucose had no influence on phloridzin binding. Phloretin was a competitive inhibitor of high affinity phloridzin binding with an apparent Ki of 16 μM. Phloretin inhibited low affinity bindings of phloridizin non-competitively. Binding of phloridzin at high affinity sites was completely reversible. Binding at low affinity sites was only partially reversed. Phloridzin bound at high affinity sites on the brush border was displaced by phloridzin and phloretin but not by d-glucose.The mechanism of the high affinity binding of phloridzin was distinguished from that of the initial interaction of d-glucose with the membrane. Binding of phloridzin required Na+, whereas the interaction of d-glucose with the membranes had a prominent Na+-independent component.Intact renal cells in cortical slices accumulated phloridzin. The uptake did not saturate, was Na+ independent, and was not competitively inhibited by sugars. These characteristics resemble those for the low affinity binding of phloridzin by isolated membranes. It is suggested that low affinity binding may represent an initial binding followed by uptake of the glycoside into membrane vesicles.  相似文献   

9.
《Life sciences》1987,41(13):1567-1576
[3H]Spiroxatrine was examined as a potential ligand for the labeling of 5-HT1A sites in the rat hippocampus. Analysis of the binding of [3H]spiroxatrine in the absence and presence of varying concentrations of three monoamine neurotransmitters revealed that serotonin (5-HT) had high affinity (IC50= 20.7 nM for the [3H]spiroxatrine binding sites, consistent with the labeling of 5-HT1 sites, while dopamine and norepinephrine had very low affinity (IC50=57600 nM and >10−4 M respectively). Saturation studies of the binding of [3H]spiroxatrine revealed a single population of sites with a Kd=2.21 nM. Further pharmacologic characterization with the 5-HT1A ligands 8-hydroxy-2-(di-n-propylamino) tetralin, ipsapirone, and WB4101 and the butyrophenone compounds spiperone and haloperidol gave results that were consistent with [3H]spiroxatrine labeling 5-HT1A sites. This ligand produced stable, reproducible binding with a good ratio of specific to nonspecific binding. The binding of [3H]spiroxatrine was sensitive to GTP, suggesting that this ligand may act as an agonist. This was supported by the finding that spiroxatrine inhibits forskolin-stimulated adenylate cyclase activity (a proposed 5-HT1A receptor model) in the rat hippocampus. Since [3H]spiroxatrine is structurally distinct from other currently available radioligands for the 5-HT1A site, it should provide new information about the properties of this putative serotonergic receptor.  相似文献   

10.
Zhu G  Jensen RG 《Plant physiology》1990,93(1):244-249
The properties of the tight and specific binding of 2-C-carboxy-d-arabinitol 1,5-bisphosphate (CABP), which occurs only to reaction sites of ribulose 1,5-bisphosphate carboxylase (Rubisco) that are activated by CO2 and Mg2+, were studied. With fully active purified spinach (Spinacia oleracea) Rubisco the rate of tight binding of [14C]CABP fit a multiple exponential rate equation with half of the sites binding with a rate constant of 40 per minute and the second half of the sites binding at 3.2 per minute. This suggests that after CABP binds to one site of a dimer of Rubisco large subunits, binding to the second site is considerably slower, indicating negative cooperativity as previously reported (S Johal, BE Partridge, R Chollet [1985] J Biol Chem 260: 9894-9904). The rate of CABP binding to partially activated Rubisco was complete within 2 to 5 minutes, with slower binding to inactive sites as they formed the carbamate and bound Mg2+. Addition of [14C]CABP and EDTA stopped binding of Mg2+ and allowed tight binding of the radiolabel only to sites which were CO2/Mg2+-activated at that moment. This approach estimated the amount of CO2/Mg2+-activated sites in the presence of inactive sites and carbamylated sites lacking Mg2+. The rate of CO2 fixation was proportional to the CO2/Mg2+-activated sites. During light-dependent CO2 fixation with isolated spinach chloroplasts, the amount of carbamylation was proportional to Rubisco activity either initially upon lysis of the plastids or following total activation with Mg2+ and CO2. Lysis of chloroplasts in media with [14C]CABP plus EDTA estimated those carbamylated sites having Mg2+. The loss of Rubisco activation during illumination was partially due to the lack of Mg2+ to stabilize the carbamylated sites.  相似文献   

11.
Binding sites on human lymphocytes for prostaglandins were examined by incubating cells with [3H]prostaglandin (PG) A1, E1, E2, F, and F. Specific reversible binding for [3H]PGE1 and E2 was found with a Kd of ~2 × 10?9M and a B max of ~200 binding sites per cell, assuming uniform distribution. We detected no specific binding of [3H]PGA1, F, or F to lymphocytes. Also, the addition of 10- to 1000-fold greater amounts of unlabeled PGA, F, or F did not inhibit the binding of [3H]PGE. The time course of [3H]PGE binding appeared to be bimodal with one component complete within 5 min at 37 °C and another component of binding increasing over a 40-min incubation. We feel that the rapid component of binding may represent cell surface receptors for PGE while the slower component may represent a specific uptake mechanism for PGE into the cell. Glass adherent cells had fewer binding sites than nonadherent cells. Preincubation of the cells overnight resulted in a loss of binding sites.  相似文献   

12.
In maize chloroplasts, the ratio of HCO3 (anion) binding sites to high-affinity atrazine binding sites is unity. In the dark, atrazine noncompetitively inhibits the binding of half of the HCO3 to the photosystem II (PSII) complexes. The inhibition of binding saturates at 5 micromolar atrazine, little inhibition is seen at 0.5 micromolar atrazine, although the high-affinity herbicide binding sites are nearly filled at this concentration. This means that HCO3 and atrazine interact noncompetitively at a specific low-affinity herbicide binding site that exists on a portion of the PSII complexes. Light abolishes the inhibitory effects of atrazine on HCO3 binding. Based on the assumption that there is one high-affinity atrazine binding site per PSII complex, we conclude that there is also only one binding site for HCO3 with a dissociation constant near 80 micromolar. The location of the HCO3 binding site, and the low-affinity atrazine binding site, is not known.  相似文献   

13.
J Hyttel 《Life sciences》1978,23(6):551-555
The subcellular localization of dopamine-sensitive adenylate cyclase was studied in rat brain striatum and compared to the distribution of dopamine binding sites. The highest specific activity of adenylate cyclase activities sensitive to dopamine was associated almost exclusively with synaptic membranes (mithchondrial fraction; P2). Using [3H] haloperidol and [3H] apomorphine as markers for the dopamine receptor, specific binding was observed in both the mitochondrial (P2) and microsomal (P3) fractions. Data for the mitochondrial fraction revealed a heterogeneity of binding sites. Two saturable sites for [3H] haloperidol were observed with Kd values of 2.5nM and 12.5nM respectively. Overall, the localization of multiple binding sites in the crude synaptosomal fraction correlates well with the localization of dopamine-sensitive adenylate cyclase in this fraction.  相似文献   

14.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

15.
3H-PGD2 was biosynthesized from 3H-arachidonate and used to study the binding of PGD2 to intact human platelets. The binding of 3H-PGD2 to platelets was rapid, being essentially complete within two min. Bound 3H-PGD2 PGD2. Scatchard analysis of concentration-dependent binding indicated a single class of binding sites with a dissociation constant (KD) of 4.12 × 10?7M and a capacity of 760 sites per platelet. The relative ability of PGD2, PGE2, PGE1 and PGI2 to displace 3H-PGD2 bound to these sites was 100:2:2<1. We conclude therefore, that these PGD2 binding sites are specific for PGD2 and independent of those previously demonstrated to recognize 3H-PGI2 and 3H-PGE1.  相似文献   

16.
T E Cote  J W Kebabian 《Life sciences》1978,23(16):1703-1713
The properties of specific 3H-dihydroalprenolol binding sites resemble the properties of the beta-receptor regulating hormone-sensitive adenylyl cyclase activity in an homogenate of rabbit cerebellum. The rabbit cerebellum has 5 to 6 pmole per gm (wet weight) of high affinity (KD=1.3 nM) specific binding sites for 3H-dihydroalprenolol. the interaction of several beta-adrenergic agonists and antagonists with the specific binding sites is rapid, reversible, and demonstrates stereospecificity which parallels the properties of the beta receptor. Beta-adrenergic agonists show a similar potency as agonists upon adenylyl cyclase activity and as inhibitors of 3H-dihydroalprenolol binding: i.e. l-isoproterenol > l-epinephrine > l-norepinephrine (suggesting a beta2 adrenergic receptor). The binding affinities of several beta-adrenergic agonists and antagonists for the specific binding sites approximate the affinities of these compounds for the stimulation of adenylyl cyclase. Thus, the 3H-dihydroalprenolol binding sites have properties similar to the beta-adrenergic receptor regulating adenylyl cyclase activity in a rabbit cerebellar homogenate.  相似文献   

17.
Abstract

Saturation experiments were performed on intact human peripheral mononuclear leucocytes (MNL) and MNL membranes with (-)125Iodocyanopindolol (125ICYP) over a large concentration range (1.5-600pmol/l). The corresponding Scatchard plots were curvilinear suggesting two saturable classes of binding sites: A high affinity binding site (Bmax1=1000±400 sites/cell, Kd1= 2.1±0.9 pmol/l for intact MNL and Bmax1=550±190 sites/cell, Kd1=4.1±0.9 pmol/l for MNL membranes)and a low affinity binding site (Bmax2=9150±3590 binding sites/cell, Kd2=440±50 pmol/l for intact MNL and Bmax2=11560±4690 sites/cell, Kd2=410±70 pmol/l for MNL membranes). Dissociation of (-)125ICYP from MNL was biphasic consisting of a slow dissociating component (dissociation rate constant k-1=(0.5±0.2)x10?3 min?1 for intact MNL and k-1=(1.0±0.1)x10?3min?1 for MNL membranes) and a fast dissociating component (k-2=(80±20)x10?3min?1 for intact MNL and k-2=(60±10)x10?3min?1 for MNL membranes). In dissociation experiments started after equilibration with various (-)125ICYP concentrations k-1 and k-2 were independent of the equilibrium concentration, whereas the percentual occupancy of the slow and the fast dissociating component varied and was similar to the estimated fractional occupancy of either binding site at the same (-)125ICYP concentrations in saturation experiments. The association rate constant was in the same order of magnitude for both binding sites. These results suggest two independent classes of binding sites for (-)125ICYP on MNL.  相似文献   

18.
Nucleotide binding properties of two vacant noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1 (CF1) were studied. Kinetics of nucleotide binding to noncatalytic sites is described by the first-order equation that allows for two nucleotide binding sites that differ in kinetic features. Dependence of the nucleotide binding rate on nucleotide concentration suggests that tight nucleotide binding is preceded by rapid reversible binding of nucleotides. ADP binding is cooperative. The preincubation of CF1 with Mg2+ produces only slight effect on the rate of ADP binding and decreases the ATP binding rate. The ATP and ADP dissociation from noncatalytic sites is described by the first-order equation for similar sites with dissociation rate constants k−2(ADP)=1.5×10−1 min−1 and k−2(ATP)≅10−3 min−1, respectively. As follows from the study, the noncatalytic sites of CF1 are not homogeneous. One of them retains the major part of endogenous ADP after CF1 precipitation with ammonium sulfate. Its other two sites can bind both ADP and ATP but have different kinetic parameters and different affinity for nucleotides.  相似文献   

19.
Abstract: The ontogeny of binding sites for [3H] spiperone was studied in time-pregnant rats. Binding of [3H]spiperone to fresh homogenates of pre- and postnatal rat forebrain was characterized by Scatchard analysis and competition experiments with a number of dopaminergic and serotonergic agonists and antagonists and additional substances. A convenient discrimination of three high-affinity sites, i.e., the dopaminergic D2, serotonergic S2, and spirodecanone (Sd) sites, was obtained with l-(–)sulpiride and cis-flupenthixol. The analgesic R5573 was found not to be specific for the Sd site but to interact with all three sites. The three binding sites became detectable in sequential order. S2 and D2 binding sites were first found at embryonic days 15.75 and 17.75, respectively. The Sd site did not appear before postnatal day 8. All three binding sites reached adult values at approximately postnatal day 30. During the prenatal period, the increase in the number of D2 binding sites paralleled the rise in forebrain dopamine concentrations. The kinetics of D2 and S2 sites were the same at embryonic day 19.75 and postnatal day 30. These observations provide evidence for the presence of the receptor substrate for actions of neuroleptics on dopaminergic and serotonergic systems during fetal life.  相似文献   

20.
The subcutaneous implantation of an estradiol pellet (10 mg) into female rats induced a hypophyseal hyperplasia with hyperprolactinaemia. Examination of neurotransmitter receptors in the hippocampus, striatum and cerebral cortex one month after the implantation revealed that estrogenization was associated with: an increased density of 3H-domperidone binding sites (D2 receptors) in the striatum and reduced numbers of 3H-serotonin high affinity sites (5-HT1 receptors) in the hippocampus and of 3H-muscimol binding sites (GABA receptors) in the hippocampus, striatum and cerebral cortex. In contrast, the characteristics of 3H-spiperone binding to 5-HT2 receptors (in the cerebral cortex) and those of 3H-flunitrazepam binding to benzodiazepine sites (in the three brain regions examined) were not significantly different in estrogenized and in control female rats. However, the enhancing effect of GABA on 3H-flunitrazepam binding was markedly reduced in brain membranes from estrogenized animals. The respective roles of estradiol and prolactin in mediating these changes in neurotransmitter receptors are discussed notably with regard to the regional heterogeneity of estradiol binding capacity in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号