首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Recombination between snowhoe hare and La Crosse bunyaviruses.   总被引:2,自引:2,他引:0       下载免费PDF全文
We have previously reported heterologous genetic recombination resulting from crosses involving temperature-sensitive (ts) mutants of La Crosse (LAC) group II and snowshoe hare (SSH) group I ts mutants (J. Gentsch, L. R. Wynne, J. P. Clewley, R. E. Shope, and D. H. L. Bishop, J. Virol. 24:893-902, 1977). From those crosses two reassortant viruses having the large/medium/small viral RNA segment genotypes of SSH/LAC/SSH and SSH/LAC/LAC were obtained. In this study it has been found that the reciprocal cross (SSH group II x LAC group I ts mutants) has not yielded the expected LAC/SSH/SSH or LAC/SSH/LAC reassortant viruses. The backcross of a SSH/LAC/SSH group II ts mutant with a LAC group I ts mutant has produced a new reassortant virus, LAC/LAC/SSH, whereas the backcross of SSH/LAC/LAC group I ts mutants with SSH group II ts mutants gave another reassortant, SSH/SSH/LAC. Backcross analyses of LAC/LAC/SSH group I ts mutants with Group II ts mutants of SSH have not yielded the expected LAC/SSH/SSH reassortant virus, nor have backcrosses of SSH/SSH/LAC group II ts mutants with group I ts mutants of LAC virus yielded the expected LAC/SSH/LAC reassortant. Possible reasons why certain reassortant viruses are not produced are discussed. A procedure to screen SSH-LAC reassortant viruses which differ in their virion N polypeptides is described.  相似文献   

3.
The complete sequence of the small (S) viral RNA species of snowshoe hare (SSH) bunyavirus has been determined, principally from a DNA copy of the RNA cloned in the E.coli plasmid pBr322. The viral S RNA (negative sense strand) is 982 nucleotides long (3.3 x 10(5) daltons) with complementary 5' and 3' end sequences. It has a base composition of 30.5%U, 25.8%A, 24.9%C and 18.7%G. In the viral complementary (plus sense) strand there are two overlapping open reading frames initiated by methionine codons. One reading frame codes for a 26.8 x 10(3) dalton protein, the other for a 10.5 x 10(3) dalton protein. The larger gene product is presumably related to the viral nucleoprotein (N) that is coded by the S RNA (Gentsch and Bishop (1978) J. Virol. 28, 417-419). The smaller gene product is probably related to the recently identified S RNA coded nonstructural protein (NSS) induced in virus infected cells (Fuller and Bishop (1982) J. Virol. 41, 643-648).  相似文献   

4.
Biochemical mapping of the simian rotavirus SA11 genome   总被引:24,自引:18,他引:6       下载免费PDF全文
  相似文献   

5.
We have purified the seven virus-specific RNAs which were previously shown to be induced in Sac(-) cells upon infection with mouse hepatitis virus strain A59 (W. J. M. Spaan, P. J. M. Rottier, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 108:424-434, 1981). The individual RNAs, prepared by agarose gel electrophoresis of the polyadenylated RNA fraction from infected cells, were obtained pure, except for the preparations of RNAs 4, 5, and 6, which contained some contamination of RNA 7. The RNAs were microinjected into Xenopus laevis oocytes, and after incubation of these cells in the presence of [35S]methionine, the proteins synthesized were analyzed by polyacrylamide gel electrophoresis. Whereas no translation products of RNAs 1, 2, 4, and 5 were detected, the synthesis of virus-specific polypeptides coded by RNAs 3, 6, and 7 was observed. RNA 7 (0.6 X 10(6) daltons) directed the synthesis of a 54,000-molecular-weight polypeptide which comigrated with viral nucleocapsid protein and which was immunoprecipitated by antiserum from mice that had been infected with the virus. RNA 6 (0.9 X 10(6) daltons) directed the synthesis of three polypeptides with molecular weights of 24,000, 25,500, and 26,500, which migrated with the same electrophoretic mobilities as three low-molecular-weight virion polypeptides. After injection of RNA 3 (3.0 X 10(6) daltons), a polypeptide with a molecular weight of about 150,000 was immunoprecipitated. This polypeptide had no counterpart in the virion, but comigrated with a virus-specific glycoprotein present in infected cells which is immunoprecipitated by a rabbit antiserum against the mouse hepatitis virus strain A59 structural proteins. This antiserum could also immunoprecipitate the translation products of RNAs 3, 6, and 7. These results indicate that RNAs 3, 6, and 7 encode viral structural proteins. The significance of the data with respect to the strategy of coronavirus replication is discussed.  相似文献   

6.
Wild-type recombinants were obtained at high frequency from coinfections of BHK cells involving temperature-sensitive, conditional-lethal mutants of snowshoe hare (SSH) and La Crosse (LAC) bunyaviruses. Analyses of two of the recombinants indicated that they have the genome compositions SSH/LAC/SSH and SSH/LAC/LAC for their respective L, M, and S virion RNA species. This evidence, together with that for the genetic stability of the recombinants, indicates that they were derived by segment reassortment of the competent genome pieces of the parental viruses. The SSH/LAC/SSH recombinant appears, from polypeptide analysis, to have the SSH type of nucleocapsid protein (N), whereas the SSH/LAC/LAC recombinant has the LAC nucleocapsid protein, suggesting that the viral S RNA codes for the N protein.  相似文献   

7.
Respiratory syncytial virus mRNA coding assignments.   总被引:12,自引:9,他引:3       下载免费PDF全文
The polypeptide coding assignments for six of the respiratory syncytial virus-specific mRNAs were determined by translation of the individual mRNAs in vitro. The coding assignments of the RNAs are as follows. RNA band 1 is complex and can be separated into at least two components on the basis of electrophoretic mobility (molecular weights [MWs] approximately equal to 0.21 X 10(6) and 0.31 X 10(6), respectively) that code for three polypeptides of 9.5, 11, and 14 kilodaltons (K). RNA 2 (MW, 0.39 X 10(6)) codes for a 34K polypeptide; RNA 3 (MW, 0.40 X 10(6)) codes for a 26K polypeptide; RNA 4 (MW, 0.47 X 10(6)) codes for a 42K polypeptide; and RNA 5 (MW, 0.74 X 10(6)) codes for a 59K polypeptide. By limited-digest peptide mapping, the 34, 26, and 42K polypeptides synthesized in vitro appeared to be unique. Additionally, peptide mapping showed that the 34, 26, and 42K polypeptides synthesized in vitro were indistinguishable from their counterparts synthesized in infected cells. Thus, the 34, 26, and 42K polypeptides coded for by mRNAs 2, 3, and 4, respectively, were identified as the respiratory syncytial virus phosphoprotein (34K), matrix protein (26K), and nucleocapsid protein (42K), respectively. RNA 5 was shown to code for a 59K polypeptide. The 59K polypeptide synthesized in vitro did not comigrate with any polypeptide specific to infected cells, suggesting that it is a candidate for co- or post-translational modification.  相似文献   

8.
The genome complexities of the principal intracellular viral complementary RNA species of the snowshoe hare bunyavirus have been analyzed by duplex analyses involving hybridization of complementary RNA to individual 32P-labeled viral RNA species (large, L; medium, M; and small, S), recovery of nuclease-resistant duplexes, and determination of the oligonucleotide fingerprints of the protected 32P-labeled viral sequences. The result for the M RNA (which codes for the glycoproteins G1 and G2; J. R. Gentsch and D. H. L. Bishop, J. Virol. 30:767-770, 1979) indicates that there is a single polycistronic M mRNA. Similar results were obtained for the L and S RNA species. In vitro translation studies with the S complementary RNA species of snowshoe hare virus as well as melted purified S duplexes substantiate earlier genetic and molecular studies (J. R. Gentsch and D. H. L. Bishop, J. Virol. 28:417-419, 1978; J. Gentsch, D. H. L. Bishop, and J. F. Obijeski, J. Gen. Virol. 34-257-268, 1977), which indicate that S mRNA codes for the virion nucleocapsid protein N.  相似文献   

9.
Unlike all the other Rift Valley fever virus strains (Bunyaviridae, Phlebovirus) studied so far, clone 13, a naturally attenuated virus, does not form the filaments composed of the NSs nonstructural protein in the nuclei of infected cells (R. Muller, J. F. Saluzzo, N. Lopez, T. Drier, M. Turell, J. Smith, and M. Bouloy, Am. J. Trop. Med. Hyg. 53:405-411, 1995). This defect is correlated with a large in-frame deletion in the NSs coding region of the S segment of the tripartite genome. Here, we show that the truncated NSs protein of clone 13 is expressed and remains in the cytoplasm, where it is degraded rapidly by the proteasome. Through the analysis of reassortants between clone 13 and a virulent strain, we localized the marker(s) of attenuation in the S segment of this attenuated virus. This result raises questions regarding the role of NSs in pathogenesis and highlights, for the first time in the Bunyaviridae family, a major role of the S segment in virulence and attenuation, possibly associated with a defect in the nonstructural protein.  相似文献   

10.
We determined the complete nucleotide sequence of the small (S) RNA segment of Uukuniemi virus, the prototype of the Uukuvirus genus within the Bunyaviridae family. The RNA, which is 1,720 nucleotides long, contains two nonoverlapping open reading frames. The 5' end of one strand (complementary to the viral strand) encodes the nonstructural protein NSs (273 residues; molecular weight, 32,019), whereas the 5' end of the viral-sense strand encodes the nucleocapsid protein N (254 residues; molecular weight, 28,508). Thus, the S RNA uses an ambisense coding strategy previously described for the S segment of two phleboviruses and the arenaviruses. The localization of the N protein within the S RNA sequence was confirmed by amino-terminal sequence analysis of all five possible cyanogen bromide fragments obtained from purified N protein. Northern (RNA) blot analyses with strand-specific probes showed that the N and NSs proteins are translated from subgenomic mRNAs about 800 and 850 nucleotides long, respectively. These mRNAs are apparently transcribed from full-length S RNAs of opposite polarities. The two mRNA species were also detected in virus-infected cells. Interestingly, highly purified virions contained full-length S RNA copies of both polarities at a ratio of about 10:1. In contrast, virions contained exclusively negative-strand copies of the M RNA segment. The possible significance of these results for viral infection is discussed. The amino acid sequence of the N protein showed 35 and 32% homology (identity) with the N protein of Punta Toro and sandfly fever Sicilian viruses, two members of the Phlebovirus genus. The NSs proteins were much less related (about 15% identity). In addition, the extreme 5' and 3' ends of the S RNA, which are complementary to each other, also showed a high degree of conservation with the two phleboviruses. These results indicate that the uukuviruses and phleboviruses are evolutionarily related and suggest that the two genera could be merged into a single genus within the Bunyaviridae family.  相似文献   

11.
Analyses of the virion polypeptides and genomes of several Phlebotomus fever group viruses, Karimabad, Punta Toro, Chagres, and the sandfly fever Sicilian serotype viruses, have established that they are biochemically similar to the accepted members of the Bunyaviridae family. Like snowshoe hare virus (a member of the California serogroup of the Bunyavirus genus of the Bunyaviridae family), Karimabad, Punta Toro, Chagres, and the sandfly fever Sicilian serotype viruses all have three viral RNA species, designated large (L), medium (M), and small (S). Oligonucleotide fingerprint analyses of Karimabad and Punta Toro virus RNA species indicated that their L, M, and S RNA species are unique. By polyacrylamide gel electrophoresis it was determined for Karimabad virus that the apparent molecular weights of its L, M, and S RNA species are 2.6 X 10(6), 2.2 X 10(6), and 0.8 X 10(6), respectively. For Punta Toro virus, the apparent molecular weights of its L, M, and S RNA species are 2.8 X 10(6), 1.8 X 10(6), and 0.75 X 10(6), respectively. The major internal nucleocapsid (N) protein of Karimabad virus was found to have a molecular weight of 21 X 10(3). A similar polypeptide size class was identified in preparations of sandfly fever Sicilian serotype, Chagres, and Punta Toro viruses. The Karimabad virus glycoproteins formed the external surface projections on virus particles and could be removed from virus preparations by protease treatment. The glycoproteins in an unreduced sample could be resolved into two size classes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They had apparent molecular weights of 62 X 10(3) and 50 X 10(3) in continuous polyacrylamide gels. When Karimabad virus preparations were reduced with 1% beta-mercaptoethanol, prior to resolution by continuous polyacrylamide gel electrophoresis, all the viral glycoprotein was recovered in a single size class, having an apparent molecular weight of 62 X 10(3). Two or three major virion polypeptides have been identified in preparations of Punta Toro, Chagres, and sandfly fever Sicilian serotype viruses.  相似文献   

12.
We isolated the virus-specific RNA species from Uukuniemi virus-infected chicken embryo cells and fractionated them by sucrose gradient centrifugation. In addition to three RNA species cosedimenting with the three viral RNA segments L (29S), M (23S), and S (17S), a fourth major RNA species, sedimenting at about 12S (S2), was found early in the infection. Annealing experiments indicated that the cytoplasmic L and M RNA species consisted of both plus and minus strands, with the plus strands in slight excess. Most of the S1 RNA was of negative polarity, whereas S2 was of positive polarity. The S2 RNA specifically annealed to the virion S RNA segment, indicating that it is transcribed from this segment. In vitro translation of the individual RNA species in micrococcal nuclease-treated cell-free reticulocyte extracts showed that an mRNA cosedimenting with the virion M RNA directed the synthesis of a virus-specific 110,000-dalton polypeptide (p110). This polypeptide could be immunoprecipitated with antiserum prepared against purified virions. When translation was carried out in the presence of dog pancreas microsomes, p110 was absent. Instead, an immunoprecipitable polypeptide band, with a molecular weight of about 70,000 and migrating between the virion surface glycoproteins G1 and G2, was observed. It is thus likely that the glycoproteins are synthesized as a precursor (p110), which during translation is cleaved roughly in the middle to yield G1 and G2. The 12S RNA species directed the synthesis of the nucleocapsid protein and a novel polypeptide with an apparent molecular weight of about 30,000. The latter was not precipitated with antivirion serum and was absent from lysates programmed with the corresponding RNA fraction from a mock-infected extract. Since, in addition, it was not found in purified virions and was present in the cytoplasm of infected cells but not in uninfected cells, it probably represents a nonstructural polypeptide.  相似文献   

13.
Encephalomyocarditis (EMC) virus ribonucleic acid (RNA) stimulated the incorporation of (14)C-amino acids into polypeptides in cell-free systems using preincubated S10 extracts from L cells. Incorporation was linear for over 2 hr. Analysis of the tryptic peptides derived from the polypeptide products formed in response to EMC RNA showed them to be virus specific. The major product, a polypeptide of 140,000 in molecular weight, migrated on sodium dodecyl sulfate-polyacrylamide gels with one of the virus-specific polypeptides present in EMC-infected cells. A minor component of molecular weight about 230,000 may correspond to the product of complete translation of the EMC virus genome. Little or no effect of interferon or vaccinia virus infection was observed in the preincubated, cell-free system. The EMC RNA-stimulated incorporation of (14)C-amino acids into polypeptides was not inhibited in extracts derived from L cells early in virus infection, from interferon-treated cells, or from cells subjected to both treatments. Interferon treatment did appear to have a slight inhibitory effect on chain elongation in this system. However, treatment of cells with highly purified interferon before virus infection caused a decrease of about 80% in the capacity of non-preincubated cell extracts to translate added EMC RNA. This effect did not extend to the translation of polyuridylic acid and could be reversed by preincubation of the extracts at 37 C for 20 min. The inhibition of translation was manifest at interferon concentrations as low as 5IU/ml, and in this respect closely paralleled the inhibition of virus growth. Inactivation of the antiviral activity of the interferon by heating or digestion with trypsin also abolished the effect on cell-free protein synthesis. The EMC-specific polypeptides formed in reduced amounts in extracts of interferon-treated vaccinia-infected cells were smaller than those formed in extracts of untreated, vaccinia-infected cells. Thus, inhibition of initiation or elongation of polypeptides, or both, can be demonstrated in cell-free systems employing non-preincubated extracts from interferon-treated, virus-infected cells. These results indicate that antiviral activity of interferon is directed against the translation of viral messenger RNA.  相似文献   

14.
15.
We have isolated 18S RNA from cytoplasmic extracts of Newcastle disease virus-infected Chinese hamster ovary cells and tested its ability to direct protein synthesis in extracts derived from wheat germ. The products of the cell-free reaction directed by this RNA contain polypeptides that comigrate with NP, M,F, and 47K roteins from virions. In addition, the products contain a polypeptide (67K) that migrates on polyacrylamide gels slightly faster than the HN protein from virions. Tryptic peptide analysis of the cell-free products and proteins from virions confirms their identity.  相似文献   

16.
17.
The small RNA segment (S segment) of Uukuniemi (UUK) virus encodes two proteins, the nucleocapsid protein (N) and a nonstructural protein (NSs), by an ambisense strategy. The function of NSs has not been elucidated for any of the bunyaviruses expressing this protein. We have now expressed the N and NSs proteins in Sf9 insect cells by using the baculovirus expression system. High yields of both proteins were obtained. A monospecific antibody was raised against gel-purified NSs and used to study the synthesis and localization of the protein in UUK virus-infected BHK21 cells. While the N protein was detected as early as 4 h postinfection (p.i.), NSs was identified only after 8 h p.i. Both proteins were still synthesized at high levels at 24 h p.i. The half-life of NSs was about 1.5 h, while that of the N protein was several hours. Sucrose gradient fractionation of [35S]methionine-labeled detergent-solubilized extracts of infected BHK21 cells indicated that NSs was firmly associated with the 40S ribosomal subunit. This association took place shortly after translation and was partially resistant to 1 M NaCl. NSs expressed by using the T7 vaccinia virus expression system, as well as in vitro-translated NSs, was also associated with the 40S subunit. In contrast, in vitro-translated N protein was found on top of the gradient. Immunolocalization of NSs, in UUK virus-infected cells, by using an affinity-purified antibody showed a granular cytoplasmic staining. A very similar pattern was seen for cells expressing NSs from a cDNA copy by using a vaccinia virus expression system. No staining was observed in the nuclei in either case. Furthermore, NSs was found neither in virions nor in nucleocapsids isolated from infected cells. In vivo labeling with 32Pi indicated that NSs is not phosphorylated. The possible function of NSs is discussed in light of these results.  相似文献   

18.
Intracellular synthesis of measles virus-specified polypeptides.   总被引:20,自引:15,他引:5       下载免费PDF全文
The intracellular synthesis of measles-specified polypeptides was examined by means of polyacrylamide gel electrophoresis of cell extracts. Since measles virus does not efficiently shut off host-cell protein synthesis, high multiplicities of infection were used to enable viral polypeptides to be detected against the high background of cellular protein synthesis. The cytoplasm of infected cells contained viral structural polypeptides with estimated molecular weights of 200,000, 80,000, 70,000, 60,000, 41,000, and 37,000. All of these structural polypeptides, with the exception of P1, the only virion glycoprotein (molecular weight congruent to 80,000), were also found in the nuclei. In addition, two nonstructural polypeptides with estimated molecular weights of 74,000 and 72,000 were also present in the cytoplasm of infected cells. The initial synthesis of the smaller, nonstructural polypeptide began later in infection than the structural polypeptides. Pulse-chase experiments failed to detect any precursor-product relationships. The intracellular glycosylation and phosphorylation of the viral polypeptides were found to be similar to those found in purified virions.  相似文献   

19.
Polioviral RNA polymerase complex, which consists of enzyme, template, and nascent RNA, is membrane bound in vivo. The solubilized RNA polymerase complex associated spontaneously in vitro with phospholipid bilayer membranes (liposomes) of defined composition. The degree of association at 37 degrees C was greater for those membranes that were more fluid, suggesting that the binding involves the interaction of the RNA polymerase complex with the hydrocarbon chains in the interior of the lipid bilayer. The polymerase activity was not enhanced by addition of the lipid; in fact, the addition of some of the longer-chain lipids resulted in up to a 40% inhibition of the polymerase activity. Spin-label electron paramagnetic resonance experiments, which measured the membrane fluidity, and kinetic experiments on the rate of incorporation of tritiated UTP into RNA by the polymerase were performed as a function of temperature. The results indicated that the activity of the polymerase was not affected by the physical state of the phospholipid membrane and that its active site was not intimately associated with the membrane. Analysis of both the viral and host polypeptides associated with the smooth membrane-bound polymerase indicated that X was the primary viral polypeptide present. In addition, host polypeptides of molecular weight 86,000, 62,000, 54,000, and 46,000 were also present. If the membrane was disrupted with detergent, polypeptide X was released from the polymerase activity, suggesting that X may play a role in binding the polymerase to the membrane. In an analogous manner, polypeptide X associated spontaneously with phospholipid membranes to a greater extent than the capsid polypeptides. Analysis of both the host and viral polypeptides associated with the viral RNA polymerase purified by precipitation in 2 M LiCl indicated that host polypeptides of molecular weight 106,000, 38,000, 33,000, and 14,000 were the major constituents, whereas relatively small amounts of the viral polypeptides were present. It was confirmed that of the viral polypeptides found, polypeptide 4 was present in the largest amount.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号