首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. V. Yeargan  L. W. Quate 《Oecologia》1996,106(2):266-271
Large immature and mature female bolas spiders of the genus Mastophora attract certain male moths by aggressive chemical mimicry of those moth species' sex pheromones. These older spiders capture moths by swinging a bolas (i.e., a sticky globule suspended on a thread) at the approaching male moths. Juvenile bolas spiders do not use a bolas, but instead use their first two pairs of legs to grab prey, which our field observations suggested were primarily nematocerous Diptera. Our field experiments over a 2-year period demonstrated that juvenile bolas spiders attract moth flies (Psychodidae), with each species apparently specializing on a particular prey species. In three experiments, sticky traps containing young Mastophora phrynosoma spiderlings consistently captured significantly more male Psychoda phalaenoides than were captured on traps containing spiderlings of other Mastophora species or no spiderlings (control traps). Results from two of the three experiments suggested that Mastophora hutchinsoni spiderlings attract male Psychoda trinodulosa. Only two of our experiments included Mastophora bisaccata and those produced contrasting results. In the first experiment, M. bisaccata appeared to attract P. phalaenoides, albeit in lower numbers than were captured on traps containing M. phrynosoma. However, in a second experiment the following year, M. bisaccata spiderlings attracted Psychoda satchelli, a species that had not been caught on any traps the previous year. As suggested by a systematist four decades ago, the taxon currently called M. bisaccata may consist of two or more sibling species, which could account for the contrasting results obtained from our two experiments involving M. bisaccata. This is the first reported evidence that, during early developmental stadia before these spiders attract moths, juvenile bolas spiders attract their prey.  相似文献   

2.
K. V. Yeargan  L. W. Quate 《Oecologia》1997,112(4):572-576
Bolas spiders in the genus Mastophora exhibit extreme sexual size dimorphism. In temperate regions, the diminutive males become adults about 2 months before females mature. Late-instar and adult females attract certain male moths by aggressive chemical mimicry of those moth species' sex pheromones. While hunting, these larger female spiders hang from a horizontal silken line and capture moths by swinging a “bolas” (i.e., a sticky globule suspended on a thread) at the approaching moths. Small, early-instar bolas spiders of both sexes attract moth flies in the genus Psychoda, which they capture without using a bolas or web. Instead, they position themselves along leaf margins and use their front two pairs of legs to grab approaching prey. The predatory habits of adult male bolas spiders have never been reported. Our field experiments demonstrated that adult males of the bolas spider Mastophora phrynosoma attract adult male Psychoda phalaenoides. Each year during our 3-year study, significantly more P. phalaenoides were captured on sticky traps baited with live adult male M. phrynosoma than on unbaited control traps. Thus, the tiny adult male bolas spiders retain the juvenile hunting tactic of attracting psychodid flies, while female bolas spiders switch from hunting psychodid flies as spiderlings to hunting moths when the female spiders become older and larger. Received: 5 May 1997 / Accepted: 14 July 1997  相似文献   

3.
Adult female bolas spiders have a unique hunting tactic that combines aggressive chemical mimicry of the sex pheromone blends of their prey moths with a specialized weapon (the bolas) and behaviors to capture attracted male moths. This report shows that female bolas spiders can release the attractive allomone before they make the bolas and that females detect moth wing vibrations from attracted prey. In response to this detection, females initiate the construction of a bolas. This ability to sample for prey presence may allow this predator to adapt its hunting activity to the temporal and spatial availability of its prey and, thereby, may reduce the constraints associated with extreme prey specialization.  相似文献   

4.
The communal orb-weaving spider, Philoponella republicana,was observed in the subtropical moist forest of Southeast Peru. These spiders live in colonies of conspecifics whose individual orbs are connected by silk. The wrapping of a prey prior to feeding is a large component of the prey capture process because P. republicanahas no venom with which to kill an insect. Wrapping time was the only aspect of prey capture that was strongly correlated with the size of the insect captured. Occasionally we observed several individuals working together to wrap a prey item. These joint efforts were more frequent on prey larger than the capturing spider. Although group captures accounted for only 5.5% of captures, they represented 14.7% of the biomass obtained. A comparison of the relationship between wrapping time and prey size for solitary and group efforts suggested that, by working together, the spiders reduced their total handling time. In most cases only one spider fed on the captured prey.  相似文献   

5.
We studied the efficiency of the hunt and the characteristics of cooperation during the prey capture in a social spider Anelosimus eximius. Two natural types of prey of roughly the same length (20 mm) were used: grasshoppers (Orthoptera) and moths (Lepidoptera); 128 tests were made on 14 colonies, the smallest with 20 and the largest with 1,700 individuals. Test times were 12.00 h, defined as an inactive period for the spiders and 18.00 h, defined as an active period. Overall capture rate of intercepted prey was 66%: it was higher in large colonies or at 18.00 h, when more spider alerts were triggered by the struggling prey. Characteristics of cooperation during capture did not vary with colony size. Capture rate was higher for grasshoppers than moths (73%-58%) in spite of similar number of alerts (76%-87%); so moths must have been more difficult to capture. For both prey types, large colonies capture more rapidly and so had advantages in terms of time gain. We showed that cooperation depended on prey type: more spiders mobilised to attack moths and attack was faster than on grasshoppers. This may be interpreted as an adaptive response of the group to the prey type.  相似文献   

6.
Specialist true predators are expected to exhibit higher capture efficiencies for the capture of larger and dangerous prey than generalist predators due to their possession of specialized morphological and behavioral adaptations. We used an araneophagous spider (Lampona murina) and a generalist spider (Drassodes lapidosus) as phylogenetically related model species and investigated their realized and fundamental trophic niches and their efficacy with respect to prey capture and prey handling. The trophic niche of both species confirmed that Lampona had a narrow trophic niche with a predominance of spider prey (including conspecifics), while the niche of Drassodes was wide, without any preference. DNA analysis of the gut contents of Lampona spiders collected in the field revealed that spiders form a significant part of its natural diet. Lampona captured significantly larger prey than itself and the prey captured by Drassodes. As concerns hunting strategy, Lampona grasped the prey with two pairs of legs possessing scopulae, whereas Drassodes immobilized prey with silk. Lampona possess forelegs equipped with scopulae and a thicker cuticle similar to other nonrelated araneophagous spiders. Lampona fed for a longer time and extracted more nutrients than Drassodes. We show that specialized behavioral and morphological adaptations altogether increase the hunting efficiency of specialists when compared to generalists.  相似文献   

7.
George W. Uetz 《Oecologia》1989,81(2):154-159
Summary Increased prey capture efficiency in colonial spiders is a consequence of the ricochet effect, as prey are captured after they bounce off several webs in succession. In this study, the prey capture of three species of colonial spiders in the genus Metepeira from Mexico are compared. These species, from different habitats, show varying levels of social organization (group size and withingroup spacing) that affect prey capture from ricochets. Metepeira sp. a (a presumed new species tentatively named atascadero) from desert grassland habitats, occur solitarily or in small groups, and gain little from prey ricochets: prey capture rates are low and variance in prey captured/spider is high. M. spinipes, from mesic agricultural sites, occur in groups of 10–150, and show a ricochet effect resulting in more and larger prey, and reduced variance in capture rate. M. incrassata, from tropical rainforest/agricultural sites, occur in large colonies of hundreds to thousands of individuals, and show a similar ricochet effect. The ricochet effect does not influence taxonomic composition of prey in either M. atascadero or M. spinipes, but does in tropical M. incrassata. This result, however, is primarily due to the capacity of certain taxa (eg., Lepidoptera), more common in the tropics, to escape more easily from spider webs. A comparison of prey capture efficiency of colonial M. incrassata with that of solitary M. atascadero shows that the ricochet effect provides an increase in efficiency across all size classes of prey.  相似文献   

8.
Argyrodes gibbosus is a kleptoparasitic spider in the web of spiders. It generally steals freshly captured prey from the web of its host. In Sicily, Argyrodes gibbosus parasitizes webs of the spider Cyrtophora citricola, a facultative colonial species. When a C. citricola female was present in its web, Argyrodes caught small prey in the web or tried to rob prey captured by the host; in that case, we never observed successful attacks on host egg-sacs. When the host disappeared from its web, the kleptoparasite modified its foraging strategies and attacked the host egg-sacs and ate the eggs. The exploitation of this new resource could ensure rapid development for the kleptoparasite which was characterized by the presence of larger females and a higher mating rate.  相似文献   

9.
Interactions between invasive species can be difficult to predict and can result in unanticipated impacts of significance for native fauna. Here we show that introduced European rabbits (Oryctolagus cuniculus) create habitat that enables invasive redback spiders (Latrodectus hasselti Thorell, 1870) to establish and prey upon the nationally endangered, endemic Cromwell chafer beetle (Prodontria lewisii Broun, 1904). We examined the spatial relationship between rabbit holes and redback spider occurrence, recorded all prey caught in redback spider webs over a 4-month period, and tested the role rabbit holes play in providing habitat for redback spiders experimentally, by filling in rabbit holes in areas used by spiders and monitoring subsequent occupation of the areas over four months. Redback spiders predominately resided in old rabbit holes, with the highest densities of spiders coinciding with high densities of rabbit holes. Cromwell chafer beetles were commonly caught in webs. Filling in rabbit holes eliminated the presence of redback spiders at all treated sites and reduced prey capture in those areas. Conservation management to protect Cromwell chafer beetles should focus on eliminating rabbits and their holes from beetle habitat.  相似文献   

10.
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non-pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well-defended arthropods, and their potential use as natural enemies of several pests in South American crops.  相似文献   

11.
1. Laboratory and field experiments showed that the hunting performance of two flower-dwelling crab spiders, Misumenops asperatus and Misumenoides formosipes, was thermally insensitive over a broad range of temperatures normally experienced by these spiders. 2. In the laboratory, HP, a behavioural metric of spider hunting performance, was similar for spiders of a given species over an ≈ 30 °C temperature range. 3. Spiders in the field captured predominantly hymenopterans and dipterans, and field hunting performance, measured as the number of prey captured per spider per day, also proved to be unaffected by temperature. 4. These findings counter the general rule that physiological/ecological performance in terrestrial arthropods is temperature dependent. 5. Freedom from temperature constraints on the capacity of crab spiders to capture prey may be due to the use of venom and/or to muscle physiological adaptations for anaerobic metabolism. 6. Wide thermal performance breadth increases the spectrum of prey available to M. asperatus and M. formosipes by allowing spiders to hunt prey active during cooler periods of the day as well as those active during warmer periods. 7. Wide thermal performance breadth also benefits M. asperatus and M. formosipes due to adult phenology; both species experience a seasonal temperature shift during the adult phase.  相似文献   

12.
Diet and foraging behaviour of three species of burrowing huntsman spiders, Leucorchestris arenicola, L. steyni and Carparachne aureoflava , from the Namib dunes were investigated over a three-year period. These nocturnal spiders are polyphagous predators that prey on more than 97 species of insects, arachnids and reptiles. Most prey were nocturnal or crepuscular tenebrionid beetles, moths and weevils. Diet varied regionally owing to faunal differences, but was relatively constant over seasons. Although spiders occasionally captured prey greater than themselves, average prey length was about two-thirds their own length. Prey size was not strongly related to spider size. Larger spiders were both cannibals and intraguild predators. Foraging pattern of L. arenicola was variable with several nights of activity followed by one or several nights of rest. Spiders foraged within 3 m of the burrow, but occasionally pursued prey or neighbouring conspecifics further. Large prey (> 3 mm) were captured approximately every five weeks in summer and every seven weeks in winter, producing an average annual consumption of ≅ 10 prey/spider. Namib huntsmen are sit-and-wait predators within narrow territories waiting for the fortuitous arrival of prey and are thus unlikely to limit prey populations. They compensate for food shortages by cannibalism, thus restricting their own population.  相似文献   

13.
Gunnar Rehfeldt 《Oecologia》1992,89(4):550-556
Summary Predation by orb-weaving spiders and crab spiders on the damselfly Calopteryx haemorrhoidalis was studied at a small stream in Southern France. One species of orb-weaving spider, Larinioides folium, caught 76% of the damselflies which fell prey to spiders. Displacement experiments on spiders on sections of bank and the positioning of webs in male territories show that the density and distribution of damselflies is not influenced by orbweb density or by the position of webs. Predation rates corresponded to orb-web density, but neither for sex nor for stage was there a relationship with damselfly density. Mean daily predation rates ranged between 0.9% for females and 4.1% for adult males. Predation risk to adult damselflies by orb-weaving spiders was male biased, whereas among tenerals there was no bias. Males were captured more frequently at territories near the water. Captures show a maximum at noon when territorial disputes of adult males were most frequent. After orbwebs were placed within territories predation rate of males was strongly increased. Predation risk to adult females in the direct vicinity of the stream was less than in the bank vegetation where they perch close to orbwebs. The risk of predation by crab spiders, which catch damselflies at their perching sites, was not sex-biased.  相似文献   

14.
Zygiella x-notata is an orb-weaving spider that often renews its trap daily. Web building has associated costs and benefits, and building successive webs may have consequences for lifetime reproductive success. In the laboratory, we tested the ability of Z. x-notata to modify its building behaviour in response to various stages in predation (prey detection, capture and ingestion) experienced with a previous web. We determined which stages provided information for the spiders. Spiders that detected, captured and ingested prey and then rebuilt their web used less silk and made a smaller capture area than in the previous web. There was no effect of prey detection alone on the next web. Capture without feeding gave the same results as capture followed by feeding. The spiders that ate prey without detection and capture (feeding by hand) had the same energetic gains as spiders that caught prey but delayed building a new web. The spiders thus showed plasticity in web-building behaviour and in the amount of silk used (energetic investment) in the short term (from one web to the next). Changes in body condition may therefore influence web construction. Moreover, information gained during prey capture appeared to influence the size and structure of the next web. This ability should enable spiders to adapt their web building to maximize their fitness. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

15.
Traps baited with the sex pheromone blend of (Z7)‐ and (Z5)‐tetradecenyl acetate captured significant numbers of male spotted cutworm moths, Xestia c‐nigrum (L.) compared to unbaited traps. Nearly no males were captured in traps baited with (Z7)‐tetradecenyl acetate, the major pheromone component. Antennae of spotted cutworm males responded to (Z7)‐, (E7)‐, (Z5)‐ and (E5)‐tetradecenyl acetate in the laboratory; however there was no response by moths in the field to the E isomers when presented in traps as major and minor components respectively of a binary blend or to the (E7) isomer as a single component. These findings clarify the makeup of a sex attractant that can be used for monitoring X. c‐nigrum on agricultural crops in Washington. However, multi‐year season‐long monitoring of spotted cutworm moths in Yakima Valley apple orchards revealed differential responses to pheromone and blacklight traps. A spring flight period showed a strong moth response to the pheromone compared to blacklight, while a later summer flight period showed a weak moth response to the pheromone relative to blacklight. At this time, we do not know which trap type might best indicate spotted cutworm abundance and risk to crops.  相似文献   

16.
Summary Selection might favor group foraging and social feeding when prey are distributed in patches that do not last long enough for a solitary individual to consume more than a small fraction of them (Pulliam and Millikan 1982; Pulliam and Caraco 1984). Here we considered the foraging behavior of a social spider, Anelosimus eximius, in light of this ephemeral resource hypothesis. This species builds large webs in which members cooperate to capture a wide variety of different sizes and types of prey, many of which are very large. The capture success of this species was very high across all prey sizes, presumably due to the fact that they foraged in groups. Group consumption times in natural colonies for all prey larger than five mm were less than the time that dead insects remained on the plastic sheets that we used as artificial webs. Solitary consumption estimates, calculated from the rate at which laboratory individuals extracted insect biomass while feeding, were the same as the residence times of insects on artificial webs in the field for insects between 6 and 15 mm in length and were significantly longer than the persistence of insects on plastic sheets for all larger insects. Large prey, that contribute substantially to colony energy supplies, appeared to be ephemeral resources for these spiders that could not be consumed by a single spider in the time they were available. These factors made the food intake of one spider in a group less sensitive to scavenging by others and could act to reinforce the social system of this species.  相似文献   

17.
This study focuses on the predatory capacity of four sympatric species of web- building spiders that inhabit coffee plantations in Southern Mexico: Gasteracantha cancriformis, Cyclosa caroli, and the morphologically similar species pair Leucauge mariana and L. venusta which were considered as one species group. The retention capabilities of the webs of these species and the incidence of prey capture and consumption were measured using eight types of insect prey belonging to the orders Coleoptera (1 species), Hymenoptera (3), Diptera (2) Lepidoptera (1) and Homoptera (1). The different characteristics of each prey such as body weight, body size, defensive behaviour, etc., were recorded. The incidence of prey retention, capture and consumption were significantly higher in G. cancriformis than in any of the other species. The lowest rates of retention, capture and consumption were observed in C. caroli, while L. mariana/venusta were intermediate in their predatory capabilities. Significant negative correlations between prey size and percent consumption were detected in L. mariana/venusta and in G. cancriformis; in both cases, large prey were less likely to be immediately consumed than small prey items. The results can be interpreted in the light of the morphological characteristics of the spiders. G. cancriformis possesses long legs and a carapace and appeared to have few difficulties to manipulate all types of prey. In contrast, C. caroli showed lesser abilities to manipulate and subdue aggressive prey items, perhaps due to the short leg length and unprotected body of this species. The consumption of prey items may be related to the predatory strategy of each spider. G. cancriformis constructs a new web every morning and prey storage was never observed. The absence of prey storage behaviour could explain why this species consumes prey soon after capture. In contrast, C. caroli constructs a permanent web and stores captured prey on a stabilimentum that may explain the very low incidence of immediate consumption of prey observed in this species.  相似文献   

18.
Some species of web building spiders use different capture tactics for different prey types. The main factors influencing the attack behaviour are the ability of the insect to escape, the risks of injury to the spiders and prey size. This study evaluated the effects of size and prey type on prey capture behaviour of the social spider Anelosimus eximius as influenced by the number of spiders attracted by prey movements that did not bite until the immobilization (bystanders) and the number of spiders that contributed to prey immobilization (catchers). We carried out a two‐factor (prey size and type) experiment offering prey belonging to four orders: Diptera, Lepidoptera, Hymenoptera and Orthoptera, in a size gradient within each prey type. Both factors influenced the number of spiders recruited as bystanders, but only prey body size influenced the number of catchers in the subduing process. The possible advantages of the presence of bystanders around the interception site are discussed.  相似文献   

19.
Prey captured by a predator may attract kleptoparasites which could significantly reduce the amount of food consumed. Stegodyphus lineatus, a cribellate spider, builds an energetically costly web. Ants raid the webs of S. lineatus to steal prey and behave as kleptoparasites. We investigated ant raids in a natural population of S. lineatus and their influence on the spider’s foraging behaviour. Considering spiders that had captured a prey, 31.2% suffered an ant raid within 24 h after the prey capture. Experimental tests showed that the response to ant raid is to delay web rebuilding and this was independent of a spider’s previous foraging success. There was a tendency for spiders that were exposed to ants to build larger webs. Neither prey-handling duration nor prey consumption was modified after exposure to ants. These results suggest that Stegodyphus lineatus adapt its web-building behaviour in response to the risk of kleptoparasitism.  相似文献   

20.
Predator–prey relationships are generally based on arm-race. Wasps and spiders are both predators, which could be potential prey for each other. The orb weaver spider Zygiella x-notata is sometimes a prey for the wasp Vespula germanica. We observed the wasp hunting behaviour under natural conditions, and we tested the influence of the spider’s behaviour on the wasp attack success. Wasps were active predators during the reproductive period of the spider. Results showed that wasps located more easily male spiders than females particularly when they were engaged in mate guarding. Female location depended on the presence of a web, but also of prey or prey remains in the web. On the other hand, their location depend neither on the characteristics and the position of the retreat in the environment nor on the size of the web. After location, males were more often captured than females whatever their behaviour (mate guarding or not). Presence of prey remains or prey in the web did not increase the risk for the spider to be captured. There was also no influence of the retreat’s characteristics or of its position in the habitat on the risk for the spider to be captured; but wasp successful attacks were less numerous when silk was present around the entrance of the retreat or when the spider was completely inside. As prey and prey remains favoured location of spiders by the wasps, we tested spider web cleaning behaviour as a response to wasp predatory pressure. By throwing small polystyrene pellets in the webs, we observed that more 80% of the spiders rejected the pellets in less than one minute. Our data indicated that wasps were significant predators of Z. x-notata and wasp attack could have been a selective pressure that had favoured spider defensive behaviours such as web cleaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号