首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M?ssbauer spectra of whole cells of Neurospora crassa arg-5 ota aga (a siderophore-free mutant) show that the siderophore coprogen is accumulated inside the cell as an entity. 57Fe from 57Fe-labeled coprogen is slowly removed from the complex (45% in 27 h). The rate of removal depends on the degree of iron starvation of the cells. The distribution of 55Fe from [55Fe]coprogen in vacuoles, membranes, and cytoplasm has been also determined. From this it is clear that coprogen is accumulated in the cytoplasm. In addition to its role as a siderophore, coprogen serves as an iron-storage compound. No holoferritins could be detected. We therefore conclude that this type of iron-storage protein is lacking in N. crassa. Metabolized iron was found predominantly to exist as an envelope of Fe(II) high-spin (delta = 1.2-1.3 mm s-1; delta EQ = 3.0-3.1 mm s-1 at 4.2 K) and fast-relaxing Fe(III) high-spin species (delta approximately equal to 0.25 mm s-1 and 0.45 mm s-1; delta EQ approximately equal to 0.6 mm s-1 and 0.55 mm s-1, respectively, at 4.2 K). An assignment of these major iron metabolites is difficult. The M?ssbauer data of the Fe(II) species do not fit those reported for heme, cytochromes and ferredoxins. We therefore assume that this iron metabolite represents a novel internal iron compound. One of the Fe(III) species becomes the dominant component of the cell spectra after 65 h of metabolization and might correspond to an iron-storage compound with iron oxide cores similar to bacterioferritin. After 27 h of growth in mycelia supplied with 57Fe-labeled coprogen, the siderophore ferricrocin was observed in the cell spectra. This is unexpected, since N. crassa arg-5 ota aga is unable to synthesize ornithine. We assume that ferricrocin is synthesized by the use of coprogen degradation products.  相似文献   

2.
Summary Cells of the fungusNeurospora crassa were grown under iron-deficient and iron-sufficient conditions and their plasma membrane proteins were compared. Three strains were studied:N. crassa 74A (wild type), a siderophore-free mutantN. crassa (arg-5 ota aga) as well as a slime variant ofN. crassa which lacks a cell wall. Plasma membranes were purified, solubilized and analyzed by one-dimensional SDS/polyacrylamide gel electrophoresis yielding approximately 50 distinct protein bands with molecular masses in the range 14–160 kDa. Iron-sufficient and iron-deficient growth resulted in nearly identical plasma membrane protein profiles in all strains. Although minor alterations in the proportion of certain proteins could be detected, significant overproduction of certain membrane proteins during iron limitation could not be observed. Transport of55 Fe-labeled siderophores seems to be correlated to the degree of iron limitation. For example, transport rates were enhanced five-fold after 16 h of growth in iron-deficient medium compared to growth in iron-sufficient medium. Extraction and HPLC measurement of siderophores from conidiospores yielded approximately 10–15 mol/spore, indicating that germination tubes and young cells used for transport measurements are not iron-deficient. It is suggested that the putative transport systems for siderophores in fungal plasma membranes are constitutively expressed and enhanced uptake of siderophores during iron limitation is rather the result of cellular transport regulation mechanisms.  相似文献   

3.
The filamentous ascomycete A. nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin intracellularly. In this study we report the characterization of two siderophore biosynthetic genes, sidA encoding l-ornithine N(5)-monooxygenase and sidC encoding a non-ribosomal peptide synthetase respectively. Disruption of sidC eliminated synthesis of ferricrocin and deletion of sidA completely blocked siderophore biosynthesis. Siderophore-deficient strains were unable to grow, unless the growth medium was supplemented with siderophores, suggesting that the siderophore system is the major iron assimilatory system of A. nidulans during both iron depleted and iron-replete conditions. Partial restoration of the growth of siderophore-deficient mutants by high concentrations of Fe(2+) (but not Fe(3+)) indicates the presence of an additional ferrous transport system and the absence of an efficient reductive iron assmilatory system. Uptake studies demonstrated that TAFC-bound iron is transferred to cellular ferricrocin whereas ferricrocin is stored after uptake. The siderophore-deficient mutant was able to synthesize ferricrocin from triacetylfusarinine C. Ferricrocin-deficiency caused an increased intracellular labile iron pool, upregulation of antioxidative enzymes and elevated sensitivity to the redox cycler paraquat. This indicates that the lack of this cellular iron storage compound causes oxidative stress. Moreover, ferricrocin biosynthesis was found to be crucial for efficient conidiation.  相似文献   

4.
Zinc plays a critical role in a diverse array of biochemical processes. However, excess of zinc is deleterious to cells. Therefore, cells require finely tuned homeostatic mechanisms to balance uptake and storage of zinc. Here we show that iron starvation affects zinc metabolism by downregulating expression of the plasma membrane zinc importer encoding zrfB and upregulating the putative vacuolar zinc transporter-encoding zrcA in Aspergillus fumigatus. Nevertheless, the zinc content of iron-starved mycelia exceeded that of iron replete mycelia, possibly due to unspecific metal uptake induced by iron starvation. In agreement with increased zinc excess and zinc toxicity during iron starvation, deficiency in siderophore-mediated high-affinity iron uptake caused hypersensitivity to zinc. Moreover, an increase of zinc uptake by conditional overexpression of zrfB was more toxic under iron depleted compared to iron replete conditions. This deregulated zinc uptake under iron starvation caused a decrease in heme production and an increase in protoporphyrin IX accumulation. Furthermore, zinc excess impaired production of the extracellular siderophore triacetylfusarinine C but not the intracellular siderophore ferricrocin. Taken together, these data demonstrate a fine tuned coordination of zinc and iron metabolism in A. fumigatus.  相似文献   

5.
Summary Theqa-2 gene ofNeurospora crassa encodes catabolic dehydroquinase which catabolizes dehydroquinic acid to dehydroshikimic acid. TheQUTE gene ofAspergillus nidulans corresponds to theqa-2 gene ofN. crassa. The plasmid pEH1 containing theQUTE gene fromA. nidulans was used to transform aqa-2 strain ofN. crassa. In Southern blot analyses, DNAs isolated from these transformants hybridized specifically to theQUTE gene probe. Northern blot analyses indicated thatQUTE mRNA was produced in the transformants. The functional integrity of theQUTE gene inN. crassa was indicated by transformants which had regained the ability to grow on quinic acid as sole carbon source. Enzyme assays indicated that the specific activities of catabolic dehydroquinase induced by quinic acid in the transformants ranged from 4% to 32% of that induced in wild-typeN. crassa. The evidence that theQUTE structural gene ofA. nidulans is inducible when introduced into theN. crassa genome implies that theN. crassa qa activator protein can recognize, at least to a limited extent, DNA binding sequences 5 to theQUTE gene.  相似文献   

6.
Cyclic AMP and cyclic GMP were released into the growth medium of mycelia of Neurospora crassa wild-type strains St.L.74A and Em5297a and by white collar-1 and white collar-2 mutant strains. After growth for 6 days at 18°C, there were 2.19 (St.L.74A), 5.83 (Em5297a), 1.38 (white collar-1), and 1.10 (white collar-2) nanomoles of cyclic AMP per gram dry weight of mycelia in the growth medium. These values corresponded to concentrations of cyclic AMP of between approximately 10 and 50 nanomolar. The corresponding values for extracellular cyclic GMP were typically less than 6% of the values for cyclic AMP. Following transfer to fresh medium, cyclic AMP efflux was demonstrated for each of the strains, and the amount of cyclic AMP exported into the fresh medium was greater at 25°C than 6°C. Intracellular cyclic AMP and cyclic GMP were also measured in each of the strains. The values for cyclic AMP were in the same range as those in the literature (approximately 0.5 to 1.5 nanomoles per gram dry weight of mycelia). However, the corresponding intracellular cyclic GMP values were less than 1% of the cyclic AMP values, i.e. more than 50 times lower than the value previously reported for the St.L.74A wild-type. Transfer of mycelia after 6 days at 18°C to fresh media and incubation for 2 hours at 25°C or 6°C did not consistently affect the intracellular level of cyclic AMP or cyclic GMP in the strains examined. We could detect no change in intracellular cyclic AMP when mycelia of the St.L.74A wild-type strain were irradiated with blue light for periods of up to 3.0 hours at 18°C, or in cyclic AMP and cyclic GMP for irradiation times of up to 1 minute at 6°C. We propose that the plasma membrane of Neurospora crassa is permeable to cyclic nucleotides, and the export of cyclic nucleotides into the growth medium may be a means of regulating intracellular levels. We conclude that three factors that affect carotenogenesis in Neurospora crassa (blue light, temperature, and the white collar mutations) have no appreciable effect on the total measurable intracellular cyclic nucleotides in this organism. There was no extracellular or intracellular cyclic AMP or cyclic GMP in the crisp-1 mutant strain, which suggested either that adenylate cyclase (which is absent in crisp-1) catalyzes the synthesis of both cyclic AMP and cyclic GMP or that the crisp-1 mutation somehow results in a deficiency of two enzymes (adenylate and guanylate cyclase).  相似文献   

7.
Ergosterol was found to be the main sterol in the mycelia of Opbiobolus graminis, Neurospora crassa, and Aspsrgillus niger, A correlation was found between the amount of sterols in the mycelia of different fungi and the inhibitory effect of aescin. Aescin treatment caused a reduction of the amount of extractable sterols in the mycelia. The sterols seemed to be located mainly in the plasma membranes, and only trace amounts were Found in the mitochondrial membranes. The relative amount of sterols in the plasma membrane was found to be higher in O. graminis than in N. crassa and A. niger. Ca2+ interfered with the interaction, of sterols and aescin. In N. crassa the decreased inhibitory effect of aescin in the presence of Ca2+ was due to the reduced binding of the inhibitor to the sterols in the plasma membrane.  相似文献   

8.
Treatment ofNeurospora crassamycelia with cupric ion has been shown to permeabilize the plasma and mitochondrial membranes. Permeabilized mycelia were shown to take up arginine into the vacuoles. Uptake was ATP-independent and appeared to be driven by an existing K+-gradient. The kinetic characteristics of the observed uptake were similar to those observed using vacuolar membrane vesicles: theKmfor arginine uptake was found to be 4.2–4.5 mM. Permeabilized mycelia were used to study the regulation of arginine uptake into vacuoles. The results suggest that uptake is relatively indifferent to the contents of the vacuoles and is not affected by growth of mycelia in amino acid-supplemented medium. Efflux of arginine, lysine, and ornithine from vacuoles was also measured using mycelia permeabilized with cupric ion. Arginine release was shown to be specifically enhanced by cytosolic ornithine and/or increases in the vacuolar pool of arginine or ornithine. Lysine efflux was shown be indifferent to the presence of other amino acids. These observations emphasize the importance of vacuolar compartmentation in controlling arginine and ornithine metabolism and suggest that vacuolar compartmentation may play an important role in nitrogen homeostasis of filamentous fungi.  相似文献   

9.
Aspergillus fumigatus, the most common airborne fungal pathogen of humans, employs two high-affinity iron uptake systems: iron uptake mediated by the extracellular siderophore triacetylfusarinine C and reductive iron assimilation. Furthermore, A. fumigatus utilizes two intracellular siderophores, ferricrocin and hydroxyferricrocin, to store iron. Siderophore biosynthesis, which is essential for virulence, is repressed by iron. Here we show that this control is mediated by the GATA factor SreA. During iron-replete conditions, SreA deficiency partially derepressed synthesis of triacetylfusarinine C and uptake of iron resulting in increased cellular accumulation of both iron and ferricrocin. Genome-wide DNA microarray analysis identified 49 genes that are repressed by iron in an SreA-dependent manner. This gene set, termed SreA regulon, includes all known genes involved in iron acquisition, putative novel siderophore biosynthetic genes, and also genes not directly linked to iron metabolism. SreA deficiency also caused upregulation of iron-dependent and antioxidative pathways, probably due to the increased iron content and iron-mediated oxidative stress. Consistently, the sreA disruption mutant displayed increased sensitivity to iron, menadion and phleomycin but retained wild-type virulence in a mouse model. As all detrimental effects of sreA disruption are restricted to iron-replete conditions these data underscore that A. fumigatus faces iron-depleted conditions during infection.  相似文献   

10.
Uptake of ferric iron from ferricrocin was studied in Escherichia coli using a polymer-coupled ferricrocin that was unable to penetrate into the cell. Ferricrocinyl polyethylene glycol succinate (Mr 7000 -- 8500) promoted growth of E. coli K-12 AB2847 aroB under iron-limiting conditions. In iron-starved cells, uptake of 55Fe could be demonstrated; the amount of iron accumulated amounted to 10% of that observed with free ferricrocin. The iron supply by ferricrocin bound to polyethylene glycol was strictly dependent upon the functions expressed by the tonA and the tonB genes, as was the iron uptake promoted by free ferricrocin. Polymer-bound ferricrocin protected cells against colicin M and phage T5 by competition for the common tonA-coded outer membrane receptor protein. In addition, the rate of iron transport via the negatively charged ferricrocinyl succinate was as fast as via the neutral ferricrocin molecule. No ligand was found associated with the cells. Penetration of chelator beyond receptor is not necessary for siderophore-mediated iron uptake. It is concluded that sufficient amounts of iron can be released from the polymer complex to satisfy growth requirements.  相似文献   

11.
Aspergillus fumigatus is an opportunistic fungal pathogen that causes life-threatening infections in immunocompromised patients. Despite low levels of free iron, A. fumigatus grows in the presence of human serum in part because it produces high concentrations of siderophores. The most abundant siderophores produced by A. fumigatus are N',N',N'-triacetylfusarinine C (TAF) and ferricrocin, both of which have thermodynamic iron binding constants that theoretically allow them to remove transferrin (Tf)-bound iron. Urea-polyacrylamide gel electrophoresis was used to measure the change in concentration of Tf species incubated with TAF or ferricrocin. The rate of removal of iron from diferric Tf by both siderophores was measured, as were the individual microscopic rates of iron removal from each Tf species (diferric Tf, N-terminal monoferric Tf and C-terminal monoferric Tf). TAF removed iron from all Tf species at a faster rate than ferricrocin. Both siderophores showed a preference for removing C-terminal iron, evidenced by the fact that k(1C) and k(2C) were much larger than k(1N) and k(2N). Cooperativity in iron binding was observed with TAF, as the C-terminal iron was removed by TAF much faster from monoferric than from diferric Tf. With both siderophores, C-terminal monoferric Tf concentrations remained below measurable levels during incubations. This indicates that k(2C) and k(1C) are much larger than k(1N). TAF and ferricrocin both removed Tf-bound iron with second-order rate constants that were comparable to those of the siderophores of several bacterial pathogens, indicating they may play a role in iron uptake in vivo and thereby contribute to the virulence of A. fumigatus.  相似文献   

12.
A cell-free in vitro translation system exhibiting high activity has been developed from wild-typeNeurospora crassa mycelium. The isolation is simple and fast, and the homogenization does not appear to affect the activity of mycelial proteases and nucleases. This system is capable of supporting efficient translation of exogenously added homologous RNA as demonstrated by the experiments with PK-specific mRNA. In addition, it translates heterologous RNA efficiently, shown by the translation of globin mRNA. We did not examine theNeurospora lysate for post-translational modification activity. The procedure used for the preparation ofNeurospora cell-free extracts should be readily applicable to the other filamentous fungi.  相似文献   

13.
A venacin, the resistance factor in oat roots against Ophio-bolus graminis var. graminis, and a related triterpeneglycoside, aescin, induced a rapid release of K+ from mycelia of Opbio-bolus graminis and Neurospora crassa, suspended in phosphate buffer. N. crassa also released Mg2+ whereas no outflux of Mg2+ was found from O. graminis. The inhibitors induced a release of inorganic phosphate into acetate buffer from Neurospora crassa. The amount of inorganic phosphate in the mycelia decreased when O. graminis and N. crassa were treated with the inhibitors in phosphate buffer. In other media the inhibitors had weak or no effects on the ion contents of the mycelia. The effect of aescin was low in Aspergillus niger and nil in Pythium irregulare. However, high amounts of K+, Mg2+, and phosphate ions were lost to the medium when the mycelium of P. irregulare, washed with distilled water, was suspended in different buffers. The ions lost were reabsorbed during the experimental period. The leakage of ions indicates that the plasma membrane of the growth sensitive fungi is severely affected by the inhibitors, while a corresponding effect on the growth insensitive fungi does not take place.  相似文献   

14.
15.
Young mycelia of the fungus Neurospora crassa contain a soluble NADH-linked sideramine reductase, which may be responsible for liberating iron in vivo from accumulated sideramines during iron-deficient cultivation. The enzymes can be assayed using a soluble supernatant fraction, EDTA, and an atmosphere of pure nitrogen. The enzyme is stable without loss of activity up to 45°C and has an optimum of activity at pH 7.0. Besides coprogen (Km = 100 μM, V = 2.8 nmol/min. per mg protein), some other ferrichrome-type compounds are reduced. However, ferrichrome, ferrirubin, coprogen B and ferrioxamine are poor substrates. When the mucelia were grown in a medium containing 10?5 M ferric iron, the activity of the reductase was found to be only 30% of that found under low iron conditions. The enzyme is inhibited by oxygen, SH-alkylating agents and partly by some detergents. Unlike the reductase of N. crassa, the corresponding enzyme from Aspergillus fumigatus revealed low reduction of coprogen and high reduction of ferrichrome, indicating genus-dependent specificities of sideramine reduction enzymes in fungi. The participation of acids of the citric acid cycle as natural iron acceptors during strong iron deficiency is studied and confirmed by iron uptake measurements on isolated mitochondria.  相似文献   

16.
Different derivatives of coprogen B (desacetyl coprogen) and coprogen were prepared to study their iron transport properties in Neurospora crassa arg-5, ota, aga. With increasing N-acyl chain length the rates of iron chelate uptake could significantly be enhanced in the order N-acetyl-Neurospora crassa. The results suggest that the coprogen molecule requires a special hydrophobic area for optimal orientation during uptake and iron release.134. Mitteilung: Hasenböhler, A., Kneifel, H., König, W. A., Zähner, H., Zeiler, H. J.: Stenothricin, ein neuer Hemmstoff der bakteriellen Zellwandsynthese. Arch. Microbiol. 99, 307–321 (1974).  相似文献   

17.
Trichoderma reesei was grown using purified cell walls ofNeurospora crassa as a primary source of carbon. The resulting culture medium contained an undefined mixture ofN. crassa cell-wall digesting enzymes. Protoplasts (cell lacking wall) were formed when youngN. crassa hyphae were treated withTrichoderma mixture. The vast majority of protoplasts resynthesized cell-wall material when washed free of cell-wall digesting enzyme; of these, about 40% regenerated a mycelium.  相似文献   

18.
p-azidobenzoyloxy desferriferricrocin (AF) 2, a photoactivatable analog of ferrichrome, was prepared by selective acylation of the serine group of ferricrocin 1 in two steps: transesterification of ferricrocin followed by demetallation. A model compound, (L) 2-benzyloxycarbonylamino-3-p-azidobenzoyloxy N-isopropyl propionamide 8, was separately synthesized in order to set up optimal transesterification conditions to avoid , -elimination or epimerization of serine. Binding of iron-loaded AF (FeAF) to the FhuA outer membrane receptor protein of Escherichia coli AB2847 was demonstrated by inhibition of ferrichrome transport, interference with the infection by the bacteriophage 80 and with killing of cells by albomycin and colicin M. FeAF transported iron only weakly which indicates that the photoaffinity moiety is incompatible with transport or intracellular iron release from the siderophore.  相似文献   

19.
Growth promotion was tested using M. smegmatis wild type strain, an exochelin-deficient mutant, and M. fortuitum employing a broad variety of xenosiderophores including hydroxamates, catecholates and a-hydroxy carboxylic acids. The experiments revealed that utilization of siderophore-bound iron is substrate specific suggesting high-affinity siderophore receptor and transport systems. Concentration-dependent uptake of a selected xenosiderophore (fericrocin) in M. smegmatis showed saturation kinetics and uptake was inhibited by respiratory poisons. In situ Mössbauer spectroscopy of ferricrocin uptake in M. smegmatis indicated rapid intracellular reductive removal of the metal excluding intracellular ferricrocin accumulation. The ultimate intracellular iron pool is represented by a compound ( = 0.43 mm s, DE = 1.03 mm s) which has also been found in many other microorganisms and does not represent a bacterioferritin, cytochrome or iron-sulfur cluster. By contrast, iron uptake via citrate - a compound exhibiting a very low complex stability constant - involves ligand exchange with mycobactin. Mycobactin has merely a transient role. The ultimate storage compound is an E.coli-type bacterioferritin, in which over 90% of cellular iron is located.  相似文献   

20.
Aescin in phosphate buffer reduced, to some extent, the production of 14CO2 from uniformly labelled glucose in mycelia of Ophiobolus graminis and Neurospora crassa, whereas aescin in succinate buffer had no effect. The enzymatic hydrolysis of sucrose was, however, severely affected, no production of 14CO2 from labelled sucrose being found after treatment of mycelia of O. graminis with 100 mg/l of aescin and N. crassa with 300 mg/l for 90 and 300 min, respectively. In Aspergillus niger the production of 14CO2 from glucose or sucrose was not affected. The ATPase in whole cells and isolated plasma membranes was not inhibited by the aescin treatment, on the contrary, the ATPase in whole cells of N. crassa was somewhat stimulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号