首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

3′-Thio-3′-deoxyribonucleosides (U and C) have been synthesized via Vorbruggen-type glycosylation with 3-S-benzoyl-5-O-toluoyl-1,2-O-diacetylfuranose, which was obtained from 1,2-O-isopropylidene-5-O-toluoyl-3-O-trifluoromethanesulfonyl-α-D-xylofuranose. 3′-Thio-3′-deoxyuridine has been converted to its phosphoramidite.  相似文献   

2.
Abstract

The diphosphates of a series of 2′-O-allyl-1-β-D-arabinofuranosyl derivatives, previously obtained by us, have been prepared and tested for their inhibitory activity in an in vitro assay using R1 and R2 subunits of the purified recombinant mouse ribonucleotide reductase (RNR). 2′-O-Allyl-araU diphosphate proved to be inhibitory, with an IC50 of 100 μM. The 5′-phosphoramidate pronucleotide of 2′-O-allyl-araU was also prepared and tested for inhibition of tumor cell proliferation.  相似文献   

3.
Abstract

5′-Phosphonates of natural 2′-deoxynucleosides and ribonucleosides were synthesized by condensation of 3′-O-acylated 2′-deoxynucleosides or 2′,3′-substituted (2′,3′-O-isopropylidene, 2′,3′-O-methoxymethylene or 2′,3′-O-ethoxymethylene) ribonucleosides. As condensing agents, either N,N′-dicyclohexylcarbodiimide or 2,4,6-triisopropylbenzenesulphonyl chloride were used. Nucleoside 5′-ethoxycarbonylphosphonates were converted into corresponding nucleoside 5′-aminocarbonylphosphonates by action of ammonia in methanol or aqueous ammonia. 5′-Hydrogenphosphonothioates of thymidine and 3′-deoxythymidine were obtained by reaction of phosphinic acid in the presence of pivaloyl chloride with 3′-O-acetylthymidine or 3′-deoxythymidine, respectively, followed by addition of powedered sulfur. 5′-O-methylenephosphonates of thymidine and 2′-deoxyadenosine were prepared by intramolecular reaction of corresponding 3′-O-iodomethylphosphonates under basic conditions. All compounds were tested for inhibition of several viruses, including HSV-2 and CMV, but showed no activity. A few compounds insignificantly inhibited HIV-1 reproduction. Thymidine 5′-hydrogenphosphonate neutralized anti-HIV action of 3′-azido-3′-deoxythymidine (AZT) and it indirectly showed that even some nucleoside 5′-phosphonates could be partly hydrolyzed in cell culture to corresponding nucleosides.

5′-Phosphonates of modified 2′-deoxynucleosides in which one group in a phosphate residue is substituted for hydrogen, alkyl or other groups, have shown to be potent biologically  相似文献   

4.
A series of new 3′-O- and 5′-O-propargyl derivatives of 5-fluoro-2′-deoxyuridine (14) was synthesized by means of propargyl reaction of properly blocked nucleosides (2,4), followed by the deprotection reaction with ammonium fluoride. The synthesized propargylated 5-fluoro-2′-deoxyuridine analogues (14) were evaluated for their cytotoxic activity in three human cancer cell lines: cervical (HeLa), oral (KB) and breast (MCF-7), using the sulforhodamine B (SRB) assay. The highest activity and the best SI coefficient in all of the investigated cancer cells were displayed by 3′-O-propargyl-5-fluoro-2′-deoxyuridine (1), and its activity was higher than that of the parent nucleoside. The other new compounds exhibited moderate activity in all of the used cell lines.  相似文献   

5.
6.
A series of N1,N3-dialkyl-N1,N3-di(alkylcarbonothioyl) malonohydrazides have been designed and synthesized as anticancer agents by targeting oxidative stress and Hsp70 induction. Structure–activity relationship (SAR) studies lead to the discovery of STA-4783 (elesclomol), a novel small molecule that has been evaluated in a number of clinical trials as an anticancer agent in combination with Taxol.  相似文献   

7.
We describe concise and efficient synthesis of biologically very important 3′-O-tetraphosphates namely 2′-deoxyadenosine-3′-O-tetraphosphate (2′-d-3′-A4P) and 2′-deoxycytidine-3′-O-tetra-phosphate (2′-d-3′-C4P). N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine was converted into N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine-3′-O-tetraphosphate in 87% yield using a one-pot synthetic methodology. One-step concurrent deprotection of N6-benzoyl and 5′-O-levulinoyl groups using concentrated aqueous ammonia resulted 2′-d-3′-A4P in 74% yield. The same synthetic strategy was successfully employed to convert N4-benzoyl-5′-O-levulinoyl-2′-deoxycytidine into 2′-d-3′-C4P in 68% yield.  相似文献   

8.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

9.
Abstract

2,5,6-Trihalogenated benzimidazole-β-D-ribofuranosyl nucleosides and 2-substituted amino-5,6-dichlorobenzimidazole-β-L-ribofuranosyl nucleosides are potent and selective inhibitors of human cytomegalovirus (HCMV). The D-ribofuranosyl analogs are metabolized rapidly in vivo rendering them unsuitable as drug candidates. The primary source of instability is thought to be the anomeric bond. The synthesis of a series of chemically stable benzimidazole-2′-isonucleosides is presented. The synthetic schemes employed are based on nucleophilic displacements of a 2′-tosylate from carbohydrate intermediates with 2-bromo-5,6-dichlorobenzidazole. 2-Bromo and 2-isopropyl amino analogs with 3′- and 5′-oxo and deoxy substitutions were prepared. The benzimidazole-2′-isonucleosides presented here demonstrated reduced activity against HCMV when compared to other D-ribofuranosyl benzimidazole analogs. In addition, they were not found to be inhibitors of HIV.  相似文献   

10.
Abstract

In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-amino-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1- (2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2,3-dideoxy-β- D-ribofuranosyl)uracil (), 5-amino-1-(2,3-dideoxy-α,β-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-α,β-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-β-D-ribofuranosyl)cytosine (). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

11.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

12.
1. The deoxyfluoro-d-glucopyranose 6-phosphates were prepared from the corresponding deoxyfluoro-d-glucoses and ATP by using hexokinase. 2. 3-Deoxy-3-fluoro- and 4-deoxy-4-fluoro-d-glucose 6-phosphate were substrates for glucose phosphate isomerase, and in addition the products of this reaction, 3-deoxy-3-fluoro- and 4-deoxy-4-fluoro-d-fructose 6-phosphate respectively, were good substrates for phosphofructokinase. 3. Some C-2-substituted derivatives of d-glucose 6-phosphate were found to be competitive inhibitors of glucose phosphate isomerase. 4. The possible role of the hydroxyl groups in the binding of d-glucose 6-phopshate to glucose phosphate isomerase is discussed.  相似文献   

13.
1. The effect of Ca(2+), glucagon, adrenaline and adenosine 3':5'-cyclic monophosphate on gluconeogenesis by rat kidney-cortex slices was studied. 2. Glucose formation from a range of substrates, with the exception of glycerol, was increased by an increase in extracellular Ca(2+) concentration. 3. Hormones and adenosine 3':5'-cyclic monophosphate, at low Ca(2+) concentrations, stimulated glucose production from several substrates, but not from glycerol, fructose, malate or fumarate. 4. Hormonal stimulation was not detected in the absence of Ca(2+) or at 2.5mm-Ca(2+). 5. Ca(2+), hormones and adenosine 3':5'-cyclic monophosphate had no effect on phosphoenolpyruvate carboxylase activity. 6. It is proposed that Ca(2+) and adenosine 3':5'-cyclic monophosphate-mediated hormone action activate the same rate-limiting step in gluconeogenesis: this step is tentatively identified as the rate of transfer of substrates across the mitochondrial membrane.  相似文献   

14.
Abstract

The hydrolytic reactions of the dimethyl ester of 3′-deoxy-3′-thioinosine 3′-S-phosphorothiolate have been followed over a wide aciditty range by HPLC. At pH > 3, only hydroxide ion catalyzed isomerization to the 2′-dimethylphosphate takes place, whereas under more acidic conditions hydrolysis to the 2′-monomethylphosphate and 3′-S-monomethylphosphorothiolate competes. The latter is the only product accumulating in very acidic solutions (1 M hydrochloric acid). Mechanisms of the reactions are discussed.  相似文献   

15.
G-quadruplex-forming oligonucleotides containing modified nucleotide chemistries have demonstrated promising pharmaceutical potential. In this work, we systematically investigate the effects of sugar-modified guanosines on the structure and stability of a (4+0) parallel and a (3+1) hybrid G-quadruplex using over 60 modified sequences containing a single-position substitution of 2′-O-4′-C-methylene-guanosine (LNAG), 2′-deoxy-2′-fluoro-riboguanosine (FG) or 2′-deoxy-2′-fluoro-arabinoguanosine (FANAG). Our results are summarized in two parts: (I) Generally, LNAG substitutions into ‘anti’ position guanines within a guanine-tetrad lead to a more stable G-quadruplex, while substitutions into ‘syn’ positions disrupt the native G-quadruplex conformation. However, some interesting exceptions to this trend are observed. We discover that a LNAG modification upstream of a short propeller loop hinders G-quadruplex formation. (II) A single substitution of either FG or FANAG into a ‘syn’ position is powerful enough to perturb the (3+1) G-quadruplex. Substitution of either FG or FANAG into any ‘anti’ position is well tolerated in the two G-quadruplex scaffolds. FANAG substitutions to ‘anti’ positions are better tolerated than their FG counterparts. In both scaffolds, FANAG substitutions to the central tetrad layer are observed to be the most stabilizing. The observations reported herein on the effects of LNAG, FG and FANAG modifications on G-quadruplex structure and stability will enable the future design of pharmaceutically relevant oligonucleotides.  相似文献   

16.
A pyrophosphate-linked polynucleotide analog based on thymidine 3,5 bis-phosphate (pTp) catalyzes the oligomerization of activated dimers of pdAp in the presence of MgCl2. Although no catalysis of the oligomerization of the activated monomer (ImpdAplm) was observed in the presence of MgCl2, there was a significant stimulation of oligomerization by the template in the presence of MnCl2.  相似文献   

17.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

18.
The synthesis of dimethyl esters of dl-O,O′-dimethylfukiic acid (11) and dl-O,O′-dimethylepifukiic acid (12) are described.  相似文献   

19.
Abstract

The oxidation of 8,2′-S-anhydroadenosine (1a) has been investigated. The major product from the oxidation of 1a using 1-chlorobenzotriazole was the R-sulfoxide. The oxidation of 3′,5′-di-O-acetyl-8,2′-S-anhydroadenosine (1b) gave predominately the S-sulfoxide. These sulfoxides were found to be very succeptible to nucleophilic attack at C-8.  相似文献   

20.
Selective trimolar mesitylenesulfonylation of sucrose resulted in the formation of a highly crystalline trimesitylenesulfonate (1), which was isolated in greater than 50% yield without recourse to chromatography. As anticipated, the sulfonyl groups in 1 were located at the primary positions, as treatment with alkali afforded 3,6:1′,4′:3′,6′-trianhydrosucrose (4) in high yield. Fractionation of “tri-O-tosylsucrose” by high-pressure liquid chromatography effected separation of the minor isomer from the known, preponderant 6,1′,6′-isomer 3. 13C-N.m.r. spectroscopy indicated that the minor isomer was 2,6,6′-tri-O-p-tolylsulfonylsucrose (2). The trianhydride 4 was found to be dimorphous and was further characterized as the diacetate (5), the dibenzoate (6), the di-p-toluenesulfonate (7), and the dimethyl ether (8). Considerable differences in the reactivities toward acylation and etherification of the two axial hydroxyl groups in 4 permitted the preparation, in good yields, of the 4-acetate (9) and the 4-methyl ether (12). Several derivatives of methyl 3,6-anhydro-α-d-glucopyranoside (13) were prepared for comparison with corresponding derivatives of 4, and the hydroxyl groups in 13 also showed differences in reactivities analogous with those of 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号