首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate had no significant effect on the uptake of 0.025 mM cystine by isolated rat renal cortical tubules and brushborder membrane vesicles in contrast to lysine which significantly inhibits cystine transport. Glutamate, however, markedly inhibited cystine uptake by rat renal tubule cells grown in a serum-free, hormonally defined media for 5 days. Lysine also inhibited cystine transport in these cultured renal tubule cells.  相似文献   

2.
Summary The role of the enzyme, gamma-glutamyl transpeptidase on the uptake of amino acids by the brushborder membrane of the rat proximal tubule was examined by inhibiting it with AT-125 (l-[S, 5S]--amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). AT-125 inhibited 98% of the activity of gamma-glutamyl transpeptidase when incubated for 20 min at 37°C with rat brushborder membrane vesicles. AT-125 given to ratsin vivo inhibited 90% of the activity of gamma-glutamyl transpeptidase in subsequently isolated brushborder membrane vesicles from these animals. AT-125 inhibition of gamma-glutamyl transpeptidase bothin vivo andin vitro had no effect on the brushborder membrane uptake of cystine. Similarly, there was no effect of gamma-glutamyl transpeptidase inhibition by AT-125 on glutamine, proline, glycine, methionine, leucine or lysine uptake by brushborder membrane vesicles. Furthermore, the uptake of cystine by isolated rat renal cortical tubule fragments, in which the complete gamma-glutamyl cycle is present, was unaffected by AT-125 inhibition of gamma-glutamyl transpeptidase. Therefore, in the two model systems studied, gamma-glutamyl transpeptidase did not appear to play a role in the transport of amino acids by the renal brushborder membrane.  相似文献   

3.
Proline transport into renal brushborder membrane vesicles isolated from human kidney is mediated by two uptake systems. The high-affinity system is stimulated by a Na gradient and appears to be shared with glycine while the low-affinity system is not. Uptake curves of low concentrations of proline exhibit a Na-gradient-dependent overshoot indicative of electrogenic transport. The proline transport systems observed in isolated human renal brushborder membrane vesicles appear to have characteristics similar to those in rat kidney membranes.  相似文献   

4.
The uptake of cystine and lysine by rat renal brushborder membrane vesicles was examined at various intravesicular and extravesicular hydrogen ion concentrations to discern whether ionic species are determinants of specificity for the shared transport system and whether hydrogen ion gradients play a role in determining uptake values. When intravesicular and extravesicular pH are identical, the highest uptake of cystine occurred at pH 7.4, with lesser uptake at pH 6.0 and 8.3. Since cystine is electroneutral at pH 6.0 and 90% anionic at pH 8.3, it appears that neither form of the amino acid is a preferred species for transport. A similar relationship between pH and uptake occurs for lysine, which is cationic at pH below 8.5. This suggests that pH affects the functioning of the membrane carrier system independent of ionic species of the substrate. There is no apparent relationship of cystine uptake to hydrogen ion gradients across the membrane. Over the range of extravesicular pH studied, optimal cystine uptake occurred whenever the intravesicular pH was 7.4. Competitive interactions between unlabeled amino acids and labeled cystine were not affected by the extravesicular pH and, therefore, did not seem determined by the ionic species of cystine.  相似文献   

5.
The shared transport system for uptake of L-cystine and L-lysine was examined in isolated rat renal brush-border membrane vesicles for the ionic requirements for activation of the system. No requirement for sodium was seen for either cystine or lysine influx. However, the efflux of lysine from the vesicle was stimulated by Na+. Therefore, the transport system appears to be asymmetric in its requirement for sodium. Two different divalent cations were used in the membrane isolations which resulted in different responses of cystine uptake to the electrogenic movement of K+ out of the vesicle. Membranes prepared by Mg-aggregation showed no stimulation of cystine influx by the imposition of a transient interior negative potential while vesicles prepared by Ca-aggregation did respond to electrogenic stimulation by an outwardly directed K-diffusion potential in the presence of valinomycin. Lysine influx was stimulated by electrogenic potassium efflux in both Mg-prepared and Ca-prepared membranes. No difference in sodium requirement for cystine influx was seen between the vesicles isolated by different cation-aggregation methods.  相似文献   

6.
The characteristics of the uptake of L-cystine by LLC-PK1 cells were examined. The uptake diminished with time in culture after passage of cells while the uptake of sugar increased. In 48-h-cultured cells at a range of cystine concentrations including physiological levels uptake occurred via a saturable process which was independent of medium sodium concentration and pH. No inhibition of cystine uptake occurred in the presence of lysine which is known to share the cystine transport system in uncultured renal proximal tubule cells and brush-border membrane vesicles. Glutamate was a potent inhibitor of cystine uptake and participated in heteroexchange diffusion with cystine. The cystine-glutamate transport process resembles that of cultured human fibroblasts. The inability of these cells to reflect the genetically determined cystine-lysine system which is altered in the kidney in human cystinuria makes them an inappropriate model of the renal tubule cell cystine transport system. On the other hand, they may provide a model system for examining the factors which determine the presence of the various cystine transport process.  相似文献   

7.
The presence of a sodium-stimulated, saturable uptake process for L-cystine is described in brushborder membrane vesicles isolated from rat jejunal mucosa. Concentration-dependence studies indicate the presence of a single transport system for cystine withK m=0.053 mM andV max=0.633 nmol/mg/15 s. Lysine completely inhibits the uptake of cystine.  相似文献   

8.
Summary Mouse lymphoma L1210 cells maintained in vitro at a high cell density for a certain time period adapted themselves to the in vitro environment and were able to grow indefinitely. From these adapted cells, more than 30 clones were isolated. They all had much higher activity to take up cystine than the original L1210 cells, supporting a previous view that the deficiency of the cystine uptake limits the survival and growth of L1210 cells in vitro. The cystine uptake of one cloned cell line was characterized. The enhanced uptake of cystine in these cells was mainly mediated by a Na+-independent, saturable system and was potently inhibited by glutamate and some other anionic amino acids, but less by aspartate. Such activity of cystine uptake was not observed in the original L1210 cells. The results suggest that, upon adaptation in vitro, L1210 cells acquire a new cystine transport activity necessary for survival and growth in vitro.  相似文献   

9.
Uptake of L-cystine by brush-border membrane vesicles isolated from rat renal-cortical tissue was time-dependent and occurred in the absence of cystine reduction. A significant capacity for vesicular binding of cystine was observed. The amount bound increased with time of incubation and could be displaced by thiol reagents. At early time points, cystine uptake measured the transport of cystine into the intravesicular space. Total cystine uptake was mediated by multiple transport systems, including a low-Km high-affinity component which was shared by lysine, arginine, ornithine and glutamine and on which hetero-exchange diffusion of lysine and cystine was demonstrated.  相似文献   

10.
Glutamic acid was found to be growth inhibitory to a murinelymphocyte hybridoma in a concentration-dependent manner from 3to 12 mM glutamate. At 12 mM glutamate there was a 70% decreasein the specific growth rate of the cells. Attempts to alleviateinhibition or adapt cells to growth in glutamate-based mediawere unsuccessful. It is proposed that elevated glutamate levelsimpair adequate uptake of cystine, a critical amino acid for thesynthesis of glutathione. Glutathione is required by cells toprevent intracellular oxidative stress. The measured rate ofuptake of U-14C L-cystine into the cells was found to havethe following parameters: Km = 0.87 mM, Vmax = 0.9nmole/mg cell protein per min. The uptake was sodiumindependent and resembled the previously described x- ctransport system, with elevated glutamate levels causingextensive inhibition. Glutamate at a concentration of 1.4 mMcaused a 50% decrease in cystine uptake from the serum-freegrowth medium. Glutamate was taken up from the external medium(Km = 20 mM and Vmax = 12.5 nmole/mg cell protein permin) by the same transport system in a stereo specific, sodiumindependent manner. Of the amino acids examined, it was foundthat cystine and homocysteic acid were the most extensiveinhibitors of glutamate uptake and that inhibition was competitive. Metabolic profiles of the cells grown in culturescontaining enhanced glutamate levels revealed an overallincrease in net production of alanine, serine, asparagine andaspartate. A substantially increased specific consumption ofglutamate was accompanied by a decreased consumption of cystine,valine and phenylalanine.The combined kinetic and metabolic results indicate thatglutamate and cystine are taken up by the anionic transportsystem x- c. The increasing levels of glutamate in themedium result in a decreased transport of cystine by this systemdue to competitive inhibition by glutamate.  相似文献   

11.
Expression of rat jejunal cystine carrier in Xenopus oocytes   总被引:2,自引:0,他引:2  
Functional interactive cystine-lysine carriers have been expressed in Xenopus oocytes following the injection of RNA extracted from rat intestinal mucosa. Lysine-inhibitable cystine uptake was able to be measured 16 h after oocyte injection with RNA. The longer the oocytes were maintained after injection, the more cystine transport capability was induced. Uninjected or water-injected oocytes showed virtually no lysine-inhibitable cystine uptake, and no system developed after the oocytes had been isolated and maintained in vitro. The cystine uptake expressed after RNA injection was selectively inhibited by dibasic amino acids and phenylalanine but not by other amino acids or alpha-methyl-D-glucoside. Expression of the interactive cystine-lysine system was induced only by RNA isolated from intestinal tissue and not by RNA from rat liver. The Km for cystine uptake in RNA-injected oocytes was 0.01 mM and appears identical to the single system found in the RNA source tissue.  相似文献   

12.
Induction of cystine transport activity in human fibroblasts by oxygen   总被引:4,自引:0,他引:4  
The transport activity for cystine in cultured human fibroblasts decreased after incubation of the cells under a low oxygen concentration. After the incubation for 48 h under 3% oxygen, the Vmax of the transport was decreased to less than one-third of that of the control cells, with little change in Km. The similar transport activity was observed in the cells cultured under 3% oxygen for 10-40 days with several times of passages. When these low oxygen-cultured cells were incubated under room air, the activity was enhanced with a lag of about 4 h and was almost completely restored within 24 h. This restoration required protein synthesis. The cystine transport activity increased by 50% after exposure of the cells to hyperoxia (40% oxygen). From these results it is concluded that the transport activity for cystine is induced by oxygen. In contrast, little change in the transport activities for alanine and leucine occurred in the cells exposed to the corresponding hypoxia or hyperoxia. Since the cystine transported into the cells is reduced to cysteine and the cysteine readily exits to the culture medium where it autoxidizes to cystine, a cystine-cysteine cycle across the plasma membrane has been postulated. Since the autoxidation of cysteine in the culture medium was markedly slowed down under the low oxygen concentration, the change in the cystine transport activity in response to the oxygen concentration was regarded as pertinent. Induction of the cystine transport activity may constitute a protective mechanism against the oxidative stress, to which the culture cells are exposed, by providing the cells with cysteine which is mainly incorporated into glutathione.  相似文献   

13.
Sugar uptake by sugarcane cells in suspension culture was measured over short incubation time spans (5 seconds to 4 minutes), and membrane transport rates were calculated. A relatively high proportion of labeled products in cell extracts after incubation of cells with 14C-glucose for 5 seconds was sugar phosphates (56%); fructose and sucrose began to appear after 15 and 30 seconds, respectively. Galactose and 3-O-methylglucose competed appreciably with glucose uptake, but ketohexoses and pentoses did not; there was no detectable uptake of sucrose. It is postulated that besides endogenous phosphorylation and further metabolism of glucose the configuration of the hydroxyl on the carbon-2 may be important for efficient membrane transport. The cells had a particularly high affinity for glucose and 3-O-methylglucose (Km = 15 and 16 μm, respectively).  相似文献   

14.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

15.
Bovine serum albumin appreciably stimulated the initial rate and the steady-state level of proline uptake in membrane vesicles, while it had no effect on the oxidase activity for ascorbate-phenazine methosulfate, on which the transport activity depends. Bovine serum albumin showed the strongest stimulatory effect on the transport system among the proteins tested. Three other proteins did not show any effect, while beta-lactoglobulin showed a weaker but appreciable effect on the transport activity. The incubation of membrane vesicles with bovine serum albumin resulted in extensive removal of fatty acids, while none of the other membrane components, including proteins and phospholipids, was removed by this treatment. Fatty acids inhibited the proline transport activity, while the inhibited activity was appreciably restored by incubation with the albumin. An experiment with radioactive fatty acids showed that exogenously-added fatty acids bound firmly to the membrane vesicles and were removed by subsequent incubation with the albumin. The incubation of membrane vesicles for several hours resulted in an increase of fatty acids with a concomitant loss of the transport activity. Subsequent incubation with the albumin resulted in the removal of fatty acids and the partial restoration of the transport activity. Based on these results, it is concluded that bovine serum albumin specifically removed fatty acids from membrane vesicles, resulting in activation of the proline transport system.  相似文献   

16.
A proline transport carrier was extracted from the membranes of Escherichia coli with acidic n-butanol. Vesicles reconstituted from the butanol extract and E. coli phospholipids and preloaded with K+ showed rapid uphill uptake of proline when energy was supplied as a membrane potential introduced by K+-diffusion via valinomycin. Proline uptake by the reconstituted vesicles, like that of intact cells and isolated membrane vesicles, was inhibited by 3,4-dehydroproline, SH reagents, and a proton conducting uncoupler. Reconstituted vesicles of mutants defective in proline transport showed little or no proline uptake. The proline carrier was partially purified from the extract and separated from the bulk of phospholipids on Sephadex LH-20.  相似文献   

17.
The x(c) (-) cystine/glutamate antiporter is a major plasma membrane transporter for the cellular uptake of cystine in exchange for intracellular glutamate. Its main functions in the body are mediation of cellular cystine uptake for synthesis of glutathione essential for cellular protection from oxidative stress and maintenance of a cystine:cysteine redox balance in the extracellular compartment. In the past decade it has become evident that the x(c) (-) transporter plays an important role in various aspects of cancer, including: (i) growth and progression of cancers that have a critical growth requirement for extracellular cystine/cysteine, (ii) glutathione-based drug resistance, (iii) excitotoxicity due to excessive release of glutamate, and (iv) uptake of herpesvirus 8, a causative agent of Kaposi's sarcoma. The x(c) (-) transporter also plays a role in certain CNS and eye diseases. This review focuses on the expression and function of the x(c) (-) transporter in cells and tissues with particular emphasis on its role in disease pathogenesis. The potential use of x(c) (-) inhibitors (e.g., sulfasalazine) for arresting tumor growth and/or sensitizing cancers is discussed.  相似文献   

18.
We studied the interaction of positively and negatively charged unilamellar and multilamellar phospholipid vesicles (liposomes) with rat-liver parenchymal cells in primary monolayer culture. Radioactive liposomal phosphatidylcholine was taken up more rapidly and to a larger extent from unilamellar than from multilamellar vesicles. No significant difference in uptake characteristics was observed between vesicles of different charge. The presence of serum greatly reduced uptake of liposomal phosphatidylcholine of both unilamellar and multilamellar vesicles. This serum effect was independent of surface charge of the vesicles. When cells were allowed to take up radioactive liposomal phospholipid and then incubated further in absence of vesicles, part of the radioactivity associated with the cells was released into the medium, most of it as water soluble degradation products. When cells were preincubated with vesicles containing horseradish peroxidase and then, after removal of the vesicles, further incubated, peroxidase activity could be demonstrated in the culture medium, part of it only after addition of Triton X-100. These observations were taken to indicate that part of the phospholipid taken up the cells represented vesicles binding to the cell surface rather than having been internalized. Vesicle-entrapped [125I]albumin was taken up by the cells and rapidly hydrolyzed as indicated by the appearance of radioactivity soluble in trichloroacetic acid within minutes after starting the incubation. No uptake of free albumin could be demonstrated. The kinetics of albumin uptake and release of trichloroacetic acid-soluble radioactivity from the cells suggest that, initially, liposomes are internalized predominantly by endocytosis, while during prolonged incubation fusion of the liposomal membrane with the plasma membrane gradually contributes more substantially to the overall uptake process. The significance of these findings is emphasized with special reference to the use of liposomes as intravenous carriers of enzymes or drugs.  相似文献   

19.
In the human recessive condition cystinosis, cystine transport has been reported to be normal in the plasma membrane but defective in the lysosome membrane. A possible explanation is that the transport systems at the two cellular sites are identical and that the defect in cystinosis affects the porter's ability to operate at the low pH of the lysosome. To test this hypothesis the uptake of 3H-labelled cystine and glutamate by normal and cystinotic human skin fibroblasts has been measured in vitro at pH 5.8, 6.5, 7.0, 7.4 and 8.0. Uptake of glutamate was more rapid than that of cystine. Uptake of cystine increased with increasing pH, but uptake of glutamate showed no marked pH-dependence. Transport in cystinotic cells was similar to that in normal cells, and similarly affected by pH. This finding is incompatible with the hypothesis proposed above. It is concluded that the cystine porters of the plasma membrane and the lysosome membrane are probably genetically distinct.  相似文献   

20.
Purified plasma membrane vesicles isolated from R3230AC rat mammary tumors displayed carrier-mediated and stereospecific uptake. Uptake was shown to be proportional to protein concentration, sensitive to increasing osmolarity, and inhibited only by substrates entering by the same carrier. Carrier-mediated glucose uptake was inhibited rapidly by estradiol-17β and phloretin in a dose-dependent manner, whereas proline uptake was not affected by estradiol-17β. The data suggest that the inhibition of glucose by estradiol and phloretin, originally observed in whole cells, occurs by an interaction of the steroid with a component on the plasma membrane. In contrast, the lack of effects of estradiol on proline transport into vesicles implies that intracellular components may have mediated the estrogen-induced effects observed in whole cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号