首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
2.
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.  相似文献   

3.
4.
Shifts in life history traits and in the behaviour of species can potentially alter ecosystem functioning. The reproduction of the central European fire salamander (Salamandra salamandra), which usually deposits its larvae in first-order streams, in small pool and pond-like habitats, is an example of a recent local adaptation in this species. Here we aimed to quantify the direct and indirect effects of the predatory larvae on the aquatic food webs in the ponds and on the flux of matter between the ponds and adjacent terrestrial habitats. Our estimates are based on biomass data of the present pond fauna as well as on the analysis of stomach content data, growth rates and population dynamics of the salamander larvae in pond habitats. By their deposition of larvae in early spring, female fire salamanders import between 0.07 and 2.86 g dry mass m?2 larval biomass into the ponds. Due to high mortality rates in the larval phase and the relatively small size at metamorphosis of the pond-adapted salamanders compared to stream-adapted ones, the biomass export of the metamorphosed salamanders clearly falls below the initial biomass import. Catastrophic events such as high water temperatures and low oxygen levels may even occasionally result in mass mortalities of salamander larvae and thus in a net 100 % import of the salamander biomass into the pond food webs. Indirect effects further accelerate this net import of matter into the aquatic habitat, e.g. the feeding of salamanders on aquatic insect larvae with the emergence of terrestrial adults—thus preventing export—and on terrestrial organisms that fall on the water surface (supporting import). This study demonstrates that the adaptation of salamanders to pond reproduction can alter food web linkages across ecosystem boundaries by enhancing the flux of materials and energy from terrestrial (i.e. forest) to the aquatic (i.e. pond) habitat.  相似文献   

5.
Evolutionary changes in reproductive mode may affect co‐evolving traits, such as dispersal, although this subject remains largely underexplored. The shift from aquatic oviparous or larviparous reproduction to terrestrial viviparous reproduction in some amphibians entails skipping the aquatic larval stage and, thus, greater independence from water. Accordingly, amphibians exhibiting terrestrial viviparous reproduction may potentially disperse across a wider variety of suboptimal habitats and increase population connectivity in fragmented landscapes compared to aquatic‐breeding species. We investigated this hypothesis in the fire salamander (Salamandra salamandra), which exhibits both aquatic‐ (larviparity) and terrestrial‐breeding (viviparity) strategies. We genotyped 426 larviparous and 360 viviparous adult salamanders for 13 microsatellite loci and sequenced a mitochondrial marker for 133 larviparous and 119 viviparous individuals to compare population connectivity and landscape resistance to gene flow within a landscape genetics framework. Contrary to our predictions, viviparous populations exhibited greater differentiation and reduced genetic connectivity compared to larviparous populations. Landscape genetic analyses indicate viviparity may be partially responsible for this pattern, as water courses comprised a significant barrier only in viviparous salamanders, probably due to their fully terrestrial life cycle. Agricultural areas and, to a lesser extent, topography also decreased genetic connectivity in both larviparous and viviparous populations. This study is one of very few to explicitly demonstrate the evolution of a derived reproductive mode affects patterns of genetic connectivity. Our findings open avenues for future research to better understand the eco‐evolutionary implications underlying the emergence of terrestrial reproduction in amphibians.  相似文献   

6.
Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life‐history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions. These associations may help explain the widespread retention of aquatic eggs and larvae, and the overall diversity of anuran reproductive modes.  相似文献   

7.
Plethodontid salamanders capture prey with enhanced tongue protraction relative to other salamander taxa, yet metamorphosing plethodontids are hypothesized to be constrained relative to direct-developing plethodontids in their degree of tongue evolution (protraction length and velocity) by the presence of a larval stage in development. In this biphasic life history the hyobranchial apparatus serves the conflicting functions of larval suction feeding and adult tongue protraction. The deletion of the larval stage removes one of the conflicting functions and has thus permitted direct-developing plethodontids to circumvent this constraint and evolve extremely long tongues, which in some species can be projected to 80% of body length. To evaluate this constraint hypothesis and explore taxonomic diversity of feeding behaviours, we studied feeding in larvae, adults and metamorphosing individuals of seven species of metamorphosing plethodontids from the basal taxa Desmognathinae and Hemidactyliini using direct observations, high-speed videography and kinematic analysis. We found that larval plethodontids suction feed, but feeding is suspended entirely during metamorphosis, and aquatic adults do not suction feed. Adults have exapted the terrestrial modes of tongue and jaw prehension for aquatic prey capture. These findings substantiate the premise that suction feeding and tongue protraction are conflicting functions, and thus our results support the constraint hypothesis. Plethodontid adults have evolved their extreme tongue protraction ability at the expense of adult suction feeding. The rapid metamorphosis that characterizes plethodontids may be an adaptation that minimizes the non-feeding period imposed by the evolution of derived tongue protraction in adults. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 375–400.  相似文献   

8.
Most studies of salamander locomotion have focused either on swimming or terrestrial walking, but some salamanders also use limb-based locomotion while submerged under water (aquatic walking). In this study we used video motion analysis to describe the aquatic walking gait of Siren lacertina, an elongate salamander with reduced forelimbs and no hindlimbs. We found that S. lacertina uses a bipedal-undulatory gait, which combines alternating use of the forelimbs with a traveling undulatory wave. Each forelimb is in contact with the substrate for about 50% of the stride cycle and forelimbs have little temporal overlap in contact intervals. We quantified the relative timing and frequency of limb and tail movements and found that, unlike the terrestrial gaits of most salamanders, axial and appendicular movements are decoupled during aquatic walking. We found no significant relationship between stride frequency and aquatic walking velocity, but we did find a statistically significant relationship between tailbeat frequency and aquatic walking velocity, which suggests that aquatic walking speed is mainly modulated by axial movements. By comparing axial wavespeed and distance traveled per tailbeat during swimming (forelimbs not used) and aquatic walking (forelimbs used), we found lower wavespeed and greater distance traveled per tailbeat during aquatic walking. These findings suggest that the reduced forelimbs of S. lacertina contribute to forward propulsion during aquatic walking.  相似文献   

9.
Recent phylogenetic reassessment of the lungless salamanders (Plethodontidae) confirmed a major life-history reversal-from direct development to an aquatic larval stage-in the dusky salamanders (Desmognathus) of eastern North America. This reversal initiated high rates of lineage accumulation, reputedly generating the species richness and ecological breath that now characterize Desmognathus. Certain important aspects of the radiation, e.g., ecomorphological evolution, have been identified through intense sampling effort of Appalachian Highland lineages. However, the research preoccupation on montane species has left overlooked a significant component of dusky salamander distribution-the Coastal Plain. We present the first molecular phylogeny for Desmognathus to incorporate extensive coverage from the Atlantic and Gulf coastal plains. We examined 38 Coastal Plain populations in conjunction with 45 additional populations, representing 16 of the 19 nominal species. Bayesian analysis of 88 mitochondrial cox1 haplotypes diagnosed eight independent population lineages within the Coastal Plain, a number at odds with the region's three currently recognized species. Desmognathus has apparently experienced a complex biogeographic history in this physiographic region, one involving multiple invasions and several ecological transitions from lotic to lentic habitats.  相似文献   

10.
The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size.  相似文献   

11.
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.  相似文献   

12.
《Comptes Rendus Palevol》2014,13(7):611-621
Salamanders have some of the largest genomes among vertebrates, and also some of the lowest reported levels of genetic diversity. Paedomorphs, in particular, have the largest genomes on average among urodela, and display exceptionally low levels of nucleotide and protein variation. Here, we address the question of genetic variation in relation to genome size in eight different salamander families. Using the rag1 gene as a probe for evolutionary rates, we found that rates of substitution are exceptionally low in obligate paedomorphs (neotenes) and other salamander species. Substitution rates in some cases are as low as those reported for cartilaginous fish, which have the slowest mutation rates recorded so far in vertebrates. Confirming and extending an earlier study, we also found that genome size is correlated with phylogenetic age in Plethodontidae, indicating a more general trend in genome size evolution in urodela. The Plethodontidae, furthermore, display much higher levels of genetic variance than the obligate neotene families, consistent with greater habitat heterogeneity in terrestrial salamanders. Finally, we present the first direct evidence of a gene, rag1, whose substitution rate is negatively associated with genome size. Based on these and other observations, we propose a hypothesis according to which mutation rates in nuclear genes tend to increase as genome size decreases during the course of vertebrate evolution.  相似文献   

13.
The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well‐resolved phylogeny from which we determine major patterns of reproductive‐mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral‐state reconstructions suggest that terrestrial gel‐encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of terrestrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being terrestrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. Evolution from a fully aquatic reproductive mode to more terrestrial modes (direct development and foam nesting) occurs through intermediate gel nesting ancestral forms. This suggests that gel nesting is not only a possible transitional state for the evolution of terrestriality, but also that it is a versatile reproductive mode that may give rise to other terrestrial reproductive modes. Evolution of foam nesting may have enabled rhacophorids to lay a larger number of eggs in more open and drier habitats, where protection from desiccation is important. Terrestrial direct development allows frogs to lay eggs independent of bodies of water, in a diversity of humid habitats, and may represent a key innovation that facilitated the evolution of nearly half of all known rhacophorid species.  相似文献   

14.
In vertebrates with complex, biphasic, life cycles, larvae have a distinct morphology and ecological preferences compared to metamorphosed juveniles and adults. In amphibians, abrupt and rapid metamorphic changes transform aquatic larvae to terrestrial juveniles. The main aim of this study is to test whether, relative to larval stages, metamorphosis (1) resets the pattern of variation between ontogenetic stages and species, (2) constrains intraspecific morphological variability, and (3) similar to the “hour‐glass” model reduces morphological disparity. We explore postembryonic ontogenetic trajectories of head shape (from hatching to completed metamorphosis) of two well‐defined, morphologically distinct Triturus newts species and their F1 hybrids. Variation in head shape is quantified and compared on two levels: dynamic (across ontogenetic stages) and static (at a particular stage). Our results show that the ontogenetic trajectories diverge early during development and continue to diverge throughout larval stages and metamorphosis. The high within‐group variance and the largest disparity level (between‐group variance) characterize the metamorphosed stage. Hence, our results indicate that metamorphosis does not canalize head shape variation generated during larval development and that metamorphosed phenotype is not more constrained relative to larval ones. Therefore, metamorphosis cannot be regarded as a developmental constraint, at least not for salamander head shape.  相似文献   

15.
The evolution of the amniote egg is commonly regarded as an important milestone in the history of the vertebrates, an innovation that completed the transition from aquatic to fully terrestrial existence by permitting eggs to be laid away from standing water. This view derives ultimately from the recapitulationist theories of Haeckel, and rests on the assumption that extant frogs and salamanders are good models for the reproductive habits of early tetrapods and the ancestors of the amniotes. It also assumes that it is more difficult to lay eggs on land than in water, and that the amniote egg is an adaptation to the physical rigours that eggs encounter in terrestrial environments. Taken together, these assumptions comprise what may be termed the 'Haeckelian framework' for the origin of vertebrate terrestriality. Several independent lines of evidence suggest that the assumptions of the Haeckelian framework are false. There appear to be no theoretical reasons to assume that the evolution of terrestrial egg-laying was difficult, or required a structure as elaborate as the amniote egg. The physical conditions eggs encounter in the terrestrial environments where they are actually laid are quite mild. Land may in fact be an easier place to lay eggs than water. In addition, analysis of the distribution of key reproductive character states among vertebrates provides no evidence that the 'typical amphibian' reproductive mode is primitive for tetrapods. Amniotes are as likely as frogs or salamanders to retain primitive reproductive character states.  相似文献   

16.
Terrestrial support of aquatic food webs is becoming well established in the science of ecology. However, while terrestrial subsidies of energy have been shown to exert strong effects on aquatic food webs, it is less clear how variations in these subsidies, via natural or anthropogenic factors, will affect recipient ecosystems. To assess the influence of variations in terrestrial subsidies on an aquatic food web, we manipulated leaf-litter inputs in artificial ponds. Decreasing litter inputs did not affect any of the response variables in artificial ponds. This may be because the minimal amount of terrestrial carbon present combined with autochthonous production was enough to sustain the food web and/or the food web was altered in ways not detected by the experimental design. However, increasing leaf-litter inputs increased the percent survival and developmental rate of larval wood frogs (Rana sylvatica). Conversely, increasing litter input appeared to have no influence on zooplankton or salamander larvae. Increasing litter inputs also increased the dissolved organic carbon content and decreased the percent saturation of dissolved oxygen in artificial ponds. As system respiration in aquatic systems is frequently dominated by microbial respiration, we hypothesize that the effects of increasing litter input on wood frogs were the result of an increase food resources (i.e., microbes) for tadpoles. The lack of a response by salamander larvae and zooplankton may be due to the densities of zooplankton in tanks providing enough food for salamanders in all treatments, variation among specific zooplankton species in their ability to exploit these resources and transfer energy to salamanders, or omnivory among zooplankton offsetting the affects of leaf-litter inputs. Additional work is needed to determine the influence of litter inputs on zooplankton and salamanders in this community. These data demonstrate that variations in leaf-litter inputs can influence food web structure; however, the importance of these variations will likely be dependent upon the trophic position of various consumers. Handling editor: J. Cole  相似文献   

17.
The role of axial form and function during the vertebrate water to land transition is poorly understood, in part because patterns of axial movement lack morphological correlates. The few studies available from elongate, semi-aquatic vertebrates suggest that moving on land may be powered simply from modifications of generalized swimming axial motor patterns and kinematics. Lungfish are an ideal group to study the role of axial function in terrestrial locomotion as they are the sister taxon to tetrapods and regularly move on land. Here we use electromyography and high-speed video to test whether lungfish moving on land use axial muscles similar to undulatory swimming or demonstrate novelty. We compared terrestrial lungfish data to data from lungfish swimming in different viscosities as well as to salamander locomotion. The terrestrial locomotion of lungfish involved substantial activity in the trunk muscles but almost no tail activity. Unlike other elongate vertebrates, lungfish moved on land with a standing wave pattern of axial muscle activity that closely resembled the pattern observed in terrestrially locomoting salamanders. The similarity in axial motor pattern in salamanders and lungfish suggests that some aspects of neuromuscular control for the axial movements involved in terrestrial locomotion were present before derived appendicular structures.  相似文献   

18.
Bergmann's rule is the propensity for species‐mean body size to decrease with increasing temperature. Temperature‐dependent oxygen limitation has been hypothesized to help drive temperature–size relationships among ectotherms, including Bergmann's rule, where organisms reduce body size under warm oxygen‐limited conditions, thereby maintaining aerobic scope. Temperature‐dependent oxygen limitation should be most pronounced among aquatic ectotherms that cannot breathe aerially, as oxygen solubility in water decreases with increasing temperature. We use phylogenetically explicit analyses to show that species‐mean adult size of aquatic salamanders with branchial or cutaneous oxygen uptake becomes small in warm environments and large in cool environments, whereas body size of aquatic species with lungs (i.e., that respire aerially), as well as size of semiaquatic and terrestrial species do not decrease with temperature. We argue that oxygen limitation drives the evolution of small size in warm aquatic environments for species with aquatic respiration. More broadly, the stronger decline in size with temperature observed in aquatic versus terrestrial salamander species mirrors the relatively strong plastic declines in size observed previously among aquatic versus terrestrial invertebrates, suggesting that temperature‐dependent oxygen availability can help drive patterns of plasticity, micro‐ and macroevolution.  相似文献   

19.
SYNOPSIS. Studies of reproductive behavior in amphibians havebeen especially successful in synthesizing data produced frommolecular and physiological research with evolutionary parameters,such as measures of reproductive success. In particular, tworelatively new areas of amphibian research are highly amenableto synthetic studies. One area is the nature of chemical communicationby pheromone delivery in terrestrial salamanders. Male courtshippheromones, for example, are delivered to the female duringmating. These pheromones typically are received by the accessoryolfactory system and act (presumably via the hypothalamus) toincrease female receptivity. At an evolutionary level, pheromonedelivery can increase male courtship success and thus the likelihoodthat a given male will sire offspring. Variation in pheromonecomposition and effectiveness will permit us to trace the evolutionof the male pheromone on a phylogeny of related populationsand species. At a proximal level, salamander courtship pheromonesare being chemically analyzed in order to identify specificprotein components that affect female receptivity. It also willbe possible to determine whether chemical variation among malesis related to behavioral effectiveness. Thus, courtship pheromonedelivery is a behavior that has invited scrutiny from a combinationof evolutionary and mechanistic perspectives. The second researcharea that is gaining from a synthetic approach is the investigationof relationships between hormonal mechanisms and reproductivebehavior in field populations of anurans and salamanders. Amphibiansare an understudied group, and the area of hormone-behaviorrelationships is inspired by testable hypotheses based on studiesof other terrestrial vertebrates. The ability to correlate physiologicalmeasures with estimates of reproductive success identifies areasof amphibian research that will profit from continued attention.  相似文献   

20.
Summary In the evolution of land-living vertebrates, the transition from spending the entire life cycle in the water to first a biphasic (adult on land, eggs and larvae in water) and later a terrestrial life-history mode was achieved by changes in developmental processes and regulatory mechanisms. Lungfishes, salamanders and frogs are studied as examples of species which span this transition. The migration and fate of the embryonic cells that form the head is studied, using experimental embryology (extirpation and transplantation of cells), molecular markers and novel microscopy techniques — such as confocal microscopy. Knowing the migratory routes and fates of the cells that form head structures is important for an elucidation of the changes that took place e.g. when gill arches transformed into head cartilages, and when the specialised larval mouth structures present in today’s frogs and toads arose as an evolutionary innovation. Results so far indicate that the early migration and pattern formation of neural crest cells in the head region is surprisingly conserved. Both the amphibians investigated and the Australian lungfish have the same number of migrating neural crest streams, and the identity of the streams is preserved. The major difference lies in the timing of migration, where there has been a heterochronic shift such that cell migration starts much later in the Australian lungfish than in the amphibians. The molecular mechanisms regulating the formation of streams of cranial neural crest cells seem, at least in part, to be differential expression of ephrins and ephrin receptors, which mediate cell sorting. Our understanding of the behaviour of migrating cells (primarily the more well characterised neural crest cells) could be enhanced by a modelling approach. I present preliminary ideas on how this could be achieved, inspired by recent work on Dictyostelium development and our own previous work on pigment cells and their pattern formation during salamander embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号