首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hendrey  G. R.  Long  S. P.  McKee  I. F.  Baker  N. R. 《Photosynthesis research》1997,51(3):179-184
Rapid and irregular variations of atmospheric CO2 concentrations (ca) occur in nature but are often very much more pronounced and frequent when artificially enriching CO2 concentrations in simulating the future atmosphere. Therefore, there is the danger that plant responses at elevated CO2 in fumigation experiments might reflect the increased frequency and amplitude of fluctuation in concentration as well as the increase in average concentration. Tests were conducted to determine whether the photosynthetic process could sense such fluctuations in ca. Instantaneous chlorophyll fluorescence (Ft) was monitored for wheat leaves (Triticum aestivum cv. Hereward) exposed to ca oscillating symmetrically by 225 mol mol-1 about a ca set point concentration of 575 or 650 mol mol-1. No Ft response was detected to half-cycle step changes in ca lasting less than two seconds, but at half-cycles of two seconds or longer, the response of Ft was pronounced. In order to determine the in vivo linear electron transport rate (J) the O2 concentration was maintained at 21 mmol mol-1 to eliminate photorespiration. J which is directly proportional to the rate of CO2 uptake under these conditions, was not significantly changed at half-cycles of 30 s or less but was decreased by half-cycles of 60 s or longer. It was inferred that if duration of an oscillation is less than 1 minute and is symmetrical with respect to mean CO2 concentration, then there is no effect on current carbon uptake, but oscillations of 1 minute or more decrease photosynthetic CO2 uptake in wheat.  相似文献   

2.
To limit global warming below 2°C by 2100, we must drastically reduce greenhouse gas emissions and additionally remove ~100–900 Gt CO2 from the atmosphere (carbon dioxide removal, CDR) to compensate for unavoidable emissions. Seaweeds (marine macroalgae) naturally grow in coastal regions worldwide where they are crucial for primary production and carbon cycling. They are being considered as a biological method for CDR and for use in carbon trading schemes as offsets. To use seaweeds in carbon trading schemes requires verification that seaweed photosynthesis that fixes CO2 into organic carbon results in CDR, along with the safe and secure storage of the carbon removed from the atmosphere for more than 100 years (sequestration). There is much ongoing research into the magnitude of seaweed carbon storage pools (e.g., as living biomass and as particulate and dissolved organic carbon in sediments and the deep ocean), but these pools do not equate to CDR unless the amount of CO2 removed from the atmosphere as a result of seaweed primary production can be quantified and verified. The draw-down of atmospheric CO2 into seawater is via air-sea CO2 equilibrium, which operates on time scales of weeks to years depending upon the ecosystem considered. Here, we explain why quantifying air-sea CO2 equilibrium and linking this process to seaweed carbon storage pools is the critical step needed to verify CDR by discrete seaweed beds and nearshore and open ocean aquaculture systems prior to their use in carbon trading.  相似文献   

3.
Various processes for the production of carbon dioxide by microorganisms are presented. It is postulated that a microniche developed in a reducing environment; a symbiotic relationship between alga-like organisms and bacterium-like organisms in the microniche governed the production of carbon dioxide resulting in the establishment of the steady state carbon dioxide system in the sea.  相似文献   

4.
The great whales (baleen and sperm whales), through their massive size and wide distribution, influence ecosystem and carbon dynamics. Whales directly store carbon in their biomass and contribute to carbon export through sinking carcasses. Whale excreta may stimulate phytoplankton growth and capture atmospheric CO2; such indirect pathways represent the greatest potential for whale-carbon sequestration but are poorly understood. We quantify the carbon values of whales while recognizing the numerous ecosystem, cultural, and moral motivations to protect them. We also propose a framework to quantify the economic value of whale carbon as populations change over time. Finally, we suggest research to address key unknowns (e.g., bioavailability of whale-derived nutrients to phytoplankton, species- and region-specific variability in whale carbon contributions).  相似文献   

5.
6.
Summary Inactivation of immobilized -chymotrypsin in supercritical carbon dioxide was with a first-order kinetic behaviour. The increase in either the pressure or the temperature of the fluid enhanced the inactivation process of the enzyme. The fluid density was shown as a key parameter on the enzyme stability, enhancing the half-life time proportionally to the physical phase of CO2, as follows: liquid > supercritical > gas. However, the number of pressurization/depressurization cycles, and the water content of the derivative increased greatly the loss of activity.  相似文献   

7.
It is well established that an increase in the concentration of atmospheric CO(2) stimulates plant growth. Recently, many researchers have concluded that elevated CO(2) concentrations also stimulate mycorrhizal colonization. However, new evidence suggests that the observed CO(2) effects on arbuscular mycorrhizal fungi are indirect and are a result of faster plant growth at higher CO(2) concentrations. Potential changes to species assemblages of mycorrhizal fungi could affect soil carbon storage and, consequently, the feedback effects of terrestrial soil-vegetation systems on global environmental change.  相似文献   

8.
9.
There are three Northeast Pacific Rivers still supporting spawning populations of green sturgeon, Acipenser medirostris, but all have been modified hydrologically and thermally by dam construction. Age 1- to 3-year-old green sturgeon, progeny of artificially spawned, wild-caught Klamath River adults, were used to assess the effects of temperature and carbon dioxide on critical hematological parameters related to evolutionary adaptations of this species to its physical environment. In vitro measurement of the effect of temperature and carbon dioxide on blood–oxygen affinity and equilibrium curve shape yielded the following data for the respective temperature treatments (11, 15, 19, and 24°C): half-saturation values (P50’s, kPa, a measure of affinity) 1.26, 1.44, 1.63, 1.69 for low-PCO2 treatments and 2.08, 2.41, 2.74, 2.94 for high-PCO2 treatments; Bohr factors ?0.322, ?0.327, ?0.366, ?0.536; and non-bicarbonate buffer values (slykes) ?6, ?3, ?5, ?8. Temperature sensitivities (ΔH, kJ mol O 2 ?1 ) between these respective temperatures were ?34.20, ?15.24, ?6.74 for low-PCO2 treatments and ?20.05, ?27.00, and ?11.55 for the high-PCO2 treatments. These data suggest that juvenile green sturgeon may tolerate moderate environmental hypoxia, moderate aerobic activity, low to moderate hypercapnia, and moderate temperature changes in their environments.  相似文献   

10.
There are three Northeast Pacific Rivers still supporting spawning populations of green sturgeon, Acipenser medirostris, but all have been modified hydrologically and thermally by dam construction. Age 1- to 3-year-old green sturgeon, progeny of artificially spawned, wild-caught Klamath River adults, were used to assess the effects of temperature and carbon dioxide on critical hematological parameters related to evolutionary adaptations of this species to its physical environment. In vitro measurement of the effect of temperature and carbon dioxide on blood–oxygen affinity and equilibrium curve shape yielded the following data for the respective temperature treatments (11, 15, 19, and 24°C): half-saturation values (P50’s, kPa, a measure of affinity) 1.26, 1.44, 1.63, 1.69 for low-PCO2 treatments and 2.08, 2.41, 2.74, 2.94 for high-PCO2 treatments; Bohr factors −0.322, −0.327, −0.366, −0.536; and non-bicarbonate buffer values (slykes) −6, −3, −5, −8. Temperature sensitivities (ΔH, kJ mol O2−1) between these respective temperatures were −34.20, −15.24, −6.74 for low-PCO2 treatments and −20.05, −27.00, and −11.55 for the high-PCO2 treatments. These data suggest that juvenile green sturgeon may tolerate moderate environmental hypoxia, moderate aerobic activity, low to moderate hypercapnia, and moderate temperature changes in their environments.  相似文献   

11.
Quasispecies is a remarkable characteristic of hepatitis C virus (HCV) and has profound roles in HCV biology and clinical practice. The understanding of HCV quasispecies behavior, in particular in acute HCV infection, is valuable for vaccine development and therapeutic interference. However, acute HCV infection is seldom encountered in clinic practice due to its silent onset. In the present study, we reported a unique case of de novo HCV infection associated with the transplantation of bone marrow from a HCV-positive donor. HCV quasispecies diversity was determined in both the donor and the recipient over a 4-year follow-up, accompanied with simultaneous measurement of HCV neutralizing antibody. Detailed genetic and phylogenetic analyses revealed a divergent quasispecies evolution, which was not related to dynamic changes of HCV neutralizing antibody. Instead, our data suggested an essential role of the fitness adaptation of founder viral population in driving such an evolutionary pattern.  相似文献   

12.
The current research examines the impact of agitation on deactivation of isoamylase and β-amylase under supercritical carbon dioxide (SC-CO2). Our experimental results showed that the activity of either enzyme decreased with increasing pressure or speed of agitation. The degree of enzymatic deactivation caused by pressure became more prominent in the presence of agitation, suggesting that the agitation plays an important role in enzymatic deactivation in SC-CO2 environment. Moreover, the enzymatic deactivation behavior associated with agitation and pressure was further quantitatively analyzed using a proposed inactivation kinetic model. Our analysis indicated that isoamylase and β-amylase exhibited significantly different relationships between the inverse of percentage residual activity and the product of number of revolution per time and time elapsed under pressurized carbon dioxide. We believe that the outcome from this work may provide a better understanding of the effects of agitation and pressure in enzyme deactivation behavior under SC-CO2.  相似文献   

13.
During the endogenous circadian rhythm of carbon dioxide uptake in continuous light by a Crassula cean acid metabolism plant, Kalancho? daigremontiana, the two carboxylating enzymes, phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco), are active simultaneously, although, until now, only the role of PEPC in generating the rhythm has been acknowledged. According to the established model, the rhythm is primarily regulated at the PEPC activity level, modulated by periodic compartmentation of its inhibitor, malate, in the vacuole and controlled by tension/relaxation of the tonoplast. However, the circadian accumulation of malic acid (the main indicator of PEPC activity) dampened significantly within the first few periods without affecting the rhythm's amplitude. Moreover, the amount of malate accumulated during a free-running oscillation was several-fold lower than the amount expected if PEPC were the key carboxylating enzyme, based on a 1:1 stoichiometry of CO(2) and malate. Together with the observation that rates of CO(2) uptake under continuous light were higher than in darkness, the evidence shows that C(3) carboxylation greatly contributes to the generation of rhythmic CO(2) uptake in continuous light in this 'obligate' CAM plant. Because the shift from predominantly CAM to predominantly C(3) carboxylation is smooth and does not distort the trajectory of the rhythm, its control probably arises from a robust network of oscillators, perhaps also involving stomata.  相似文献   

14.
15.
Equilibrium molecular dynamics simulations were conducted to study the competitive adsorption and diffusion of mixtures containing n-octane and carbon dioxide confined in slit-shaped silica pores of width 1.9 nm. Atomic density profiles substantiate strong interactions between CO2 molecules and the protonated pore walls. Non-monotonic change in n-octane self-diffusion coefficients as a function of CO2 loading was observed. CO2 preferential adsorption to the pore surface is likely to attenuate the surface adsorption of n-octane, lower the activation energy for n-octane diffusivity, and consequently enhance n-octane mobility at low CO2 loading. This observation was confirmed by conducting test simulations for pure n-octane confined in narrower pores. At high CO2 loading, n-octane diffusivity is hindered by molecular crowding. Thus, n-octane diffusivity displays a maximum. In contrast, within the concentration range considered here, the self-diffusion coefficient predicted for CO2 exhibits a monotonic increase with loading, which is attributed to a combination of effects including the saturation of the adsorption capacity of the silica surface. Test simulations suggest that the results are strongly dependent on the pore morphology, and in particular on the presence of edges that can preferentially adsorb CO2 molecules and therefore affect the distribution of these molecules equally on the pore surface, which appears to be required to provide the effective enhancement of n-octane diffusivity.  相似文献   

16.
In semi-arid floodplains the average times between floods have been cited to drive metabolic and biogeochemical responses during the subsequent flooding pulse. However, the interaction effects of flood pulse duration and the length of time between floods on the carbon budget are not well understood. Using field experiments, flood pulses—dry cycles were simulated (SF plots—short flood/dry cycles: 15 flood days + 7 dry + 15 flood and LF plots—long flood/dry cycles: 21 flood + 14 dry + 21 flood) in a semi-arid floodplain in Central Spain, in order to study the effects on soil CO2 emissions. Differences on soil water content among SF, LF and control plots were statistically significant throughout the experiment (p < 0.01). Soil CO2 emission rates during drying time were significantly related with the duration of previous flooding and inter-flooding intervals (R 2 = 0.52–0.64, p = 0.03). During the first stage of desiccation, the high soil water content appears to limit aerobic metabolism. Soil respiration rates similar to those of control plots measurements occurred 1–2 weeks later. Then, soil respiration increased to a maximum rate which was delayed 5–8 weeks, as high soil water content limited microbial activity. While more than 7 days of inundation promoted denitrification, organic nutrients supplied by flood water increased 1% soil respiration during drying. Differences between SF and LF plots in soil CO2 emissions only appeared after floodplain soil had been subjected to two consecutive flood-dry cycles; 70 days after the second inundation ended, CO2 fluxes achieved similar values in all treatments. Daily soil CO2 emission rates during the entire study period (117 days) were comparable, independently of the flood duration and the time between floods (75.76 ± 1.59 and 77.94 ± 0.45 mmol CO2 m?2 day?1, in SF and LF, respectively). Flood disturbance affects site-specific microbial processes, but only during very short time periods. The mechanism by which soil microbial communities cope or adapt to new conditions needs to be reassessed in future research in order to determine the long-term effects of hydrological changes in the soil carbon balance of semi-arid floodplains.  相似文献   

17.
The characteristics of PHB production from carbon dioxide by autotrophic culture of Alcaligenes eutrophus ATCC 17697T using a recycled gas closed circuit culture system under the condition of oxygen limitation were investigated. Cell concentration increased to more than 60 g/l after 60 h of cultivation, while the PHB concentration reached 36 g/l. PHB accumulation in the oxygen-limited culture was superior than that in an ammonium-deficient culture. The PHB produced was identified as a homopolymer of d-3-hydroxybutyrate by 1H and 13C NMR analysis. The stoichiometry for PHB production from CO2 under the oxygen limitation condition was indicated to be as follows: 33H2 + 12O2 + 4CO2 → C4H6O2 + 30H2O. This stoichiometry shows that the hydrogen consumption per one mole of CO2 for PHB production is larger than that for cell formation.  相似文献   

18.
Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO(2)) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO(2) increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO(2) in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system.  相似文献   

19.
Skin repair following laser injury can be accelerated by using techniques that promote rapid reepithelialization. In this article, the benefit of intraoperative nondébridement of laser debris after two laser passes is discussed. After carbon dioxide laser resurfacing of the face, skin specimens were examined using indirect immunofluorescence with antibodies to specific epidermal and basement membrane proteins. Biopsy specimens obtained immediately after resurfacing showed a greater injury to epidermal and basement membrane proteins when skin was wiped with saline-soaked gauze after laser passes than when there was no débridement after two passes. Later examination of skin specimens obtained from nine patients 2 days after carbon dioxide resurfacing showed that nondébrided, occluded skin had faster reepithelialization than the other treatments. Nondébridement of the skin at the time of resurfacing along with the use of postoperative occlusive dressings led to the rapid reestablishment of a multilayered epidermis only 2 days after resurfacing. Nondébridement along with occlusive dressings results in rapid reepithelialization of the skin after two carbon dioxide laser passes for skin rejuvenation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号