首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The native crystal delta-endotoxin produced by Bacillus thuringiensis var. colmeri, serotype 21, is toxic to both lepidopteran (Pieris brassicae) and dipteran (Aedes aegypti) larvae. Solubilization of the crystal delta-endotoxin in alkaline reducing conditions and activation with trypsin and gut extracts from susceptible insects yielded a preparation whose toxicity could be assayed in vitro against a range of insect cell lines. After activation with Aedes aegypti gut extract the preparation was toxic to all of the mosquito cell lines but only one lepidopteran line (Spodoptera frugiperda), whereas an activated preparation produced by treatment with P. brassicae gut enzymes or trypsin was toxic only to lepidopteran cell lines. These in vitro results were paralleled by the results of in vivo bioassays. Gel electrophoretic analysis of the products of these different activation regimes suggested that a 130-kDa protoxin in the native crystal is converted to a 55-kDa lepidopteran-specific toxin by trypsin or P. brassicae enzymes and to a 52-kDa dipteran toxin by A. aegypti enzymes. Two-step activation of the 130-kDa protoxin by successive treatment with trypsin and A. aegypti enzymes further suggested that the 52-kDa dipteran toxin is derived from the 55-kDa lepidopteran toxin by enzymes specific to the mosquito gut. Confirmation of this suggestion was obtained by peptide mapping of these two polypeptides. The native crystal 130 kDa delta-endotoxin and the two insect-specific toxins all cross-reacted with antiserum to B. thuringiensis var. kurstaki P1 lepidopteran toxin. Preincubation of the two activated colmeri toxins with P1 antiserum neutralized their cytotoxicity to both lepidopteran and dipteran cell lines.  相似文献   

2.
The cloned 135-kDa CryIC delta-endotoxin from Bacillus thuringiensis is a lepidopteran-active toxin, displaying high activity in vivo against Spodoptera litoralis and Spodoptera frugiperda larvae and in vitro against the S. frugiperda Sf9 cell line. Here, we report that the CryIC delta-endotoxin cloned from B. thuringienesis subsp. aizawai HD-229 and expressed in an acrystalliferous B. thuringiensis strain is also toxic to Aedes aegypti, Anophles gambiae, and Culex quinquefasciatus mosquito larvae. Furthermore, when solubilized and proteolytically activated by insect gut extracts, CryIC is cytotoxic to cell lines derived from the first two of these dipteran insects. This activity was not observed for two other lepidopteran-active delta-endotoxins, CryIA(a) and CryIA(c). However, in contrast to the case with a lepidopteran and dipteran delta-endotoxin cloned from B. thuringiensis subsp. aizawai IC1 (M.Z. Haider, B. H. Knowles, and D. J. Ellar, Eur. J. Biochem. 156:531-540, 1986), no differences in the in vitro specificity or processing of CryIC were found when it was activated by lepidopteran or dipteran gut extract. The recombinant CryIC delta-endotoxin expressed in Escherichia coli was also toxic to A. aegypti larvae. By contrast, a second cryIC gene cloned from B. thuringiensis subsp. aizawai 7.29 (V. Sanchis, D. Lereclus, G. Menou, J. Chaufaux, S. Guo, and M. M. Lecadet, Mol. Microbiol. 3:229-238, 1989) was nontoxic. DNA sequencing showed that the two genes were identical. However, CryIC from B. thuringiensis subsp. aizawai 7.29 had been cloned with a truncated C terminus, and when it was compared with the full-length CryIC delta-endotoxin, it was found to be insoluble under alkaline reducing conditions. These results show that CryIC from B. thuringiensis subsp. aizawai is a dually active delta-endotoxin.  相似文献   

3.
The mechanism of action and receptor binding of a dual-specificity Bacillus thuringiensis var. aizawai ICl delta-endotoxin was studied using insect cell culture. The native protoxin was labelled with 125I, proteolytically activated and the affinity of the resulting preparations for insect cell-membrane proteins was studied by blotting. The active preparations obtained by various treatments had characteristic specificity associated with unique polypeptides, and showed affinity for different membrane proteins. The lepidopteran-specific preparation (trypsin-treated protoxin containing 58 and 55 kDa polypeptides) bound to two membrane proteins in the lepidopteran cells but none in the dipteran cells. The dipteran-specific preparation (protoxin treated sequentially with trypsin and Aedes aegypti gut proteases, containing a 53 kDa polypeptide) bound to a 90 kDa membrane protein in the dipteran (A. aegypti) cells but bound to none in the lepidopteran cells or Drosophila melanogaster cells. The toxicity of trypsin-activated delta-endotoxin was completely inhibited by preincubation with D-glucose, suggesting a role for this carbohydrate in toxin-receptor interaction. The toxicity was also decreased by osmotic protectants to an extent proportional to their viscometric radius. These results support a proposal that initial interaction of toxin with a unique receptor determines the specificity of the toxin, following which cell death occurs by a mechanism of colloid osmotic lysis.  相似文献   

4.
The mosquitocidal crystal of Bacillus thuringiensis subsp. darmstadiensis 73-E10-2 was purified, bioassayed against third-instar Aedes aegypti larvae (50% lethal concentration, 7.5 micrograms/ml), and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealing polypeptides of 125, 50, 47, and 28 kilodaltons (kDa). When solubilized and proteolytically activated by insect gut proteases or proteinase K, the crystal was cytotoxic to insect and mammalian cells in vitro and was hemolytic. By using nondenaturing polyacrylamide gel electrophoresis, a polypeptide of 23 kDa, derived from the 28-kDa protoxin, was identified which was hemolytic and cytotoxic to Aedes albopictus, A. aegypti, and Choristoneura fumiferana CF1 insect cell lines. The 23-kDa polypeptide was purified by ion-exchange chromatography and gave 50% lethal dose values of 3.8, 3.3, and 6.9 micrograms/ml against A. albopictus, A. aegypti, and C. fumiferana CF1 cells lines, respectively. Cytotoxicity in vitro was both dose and temperature dependent, with a sigmoidal dose-response curve. The cytotoxicity of the 23-kDa toxin and the solubilized and proteolytically activated delta-endotoxin was inhibited by a range of phospholipids containing unsaturated fatty acids and by triglyceride and diglyceride dispersions. An interaction with membrane phospholipids appears important for toxicity. Polyclonal antisera prepared against the 23-kDa polypeptide did not cross-react with polypeptides in the native crystals of four other mosquitocidal strains.  相似文献   

5.
An insecticidal protein gene from Bacillus thuringiensis var. aizawai was cloned in Escherichia coli. The cloned gene expressed at a high level and the synthesized protein appeared as an insoluble, phase-bright inclusion in the cytoplasm. These inclusions were isolated by density gradient centrifugation, the isolated protein was activated in vitro by different proteolytic regimes and the toxicity of the resulting preparations was studied using insect cells grown in tissue culture. The inclusions consisted of a 130 kDa polypeptide which was processed to a protease-resistant 55 kDa protein by tryptic digestion. This preparation lysed lepidopteran (Choristoneura fumiferana) CF1 cells but not dipteran (Aedes albopictus) cells. When the crystal protein was activated by sequential treatment, first with trypsin and then with Aedes aegypti gut proteases, the resulting 53 kDa polypeptide was now toxic only to the dipteran cells and not to the lepidopteran cells. Thus the dual specificity of this var. aizawai toxin results from differential proteolytic processing of a single protoxin. The trypsin-activated preparation was weakly active against Spodoptera frugiperda cells. Membrane binding studies of the trypsin-activated toxin revealed a 68 kDa protein in the lepidopteran cell membranes, which may be the receptor for this toxin.  相似文献   

6.
Bacillus thuringiensis var. aizawai HD-249 produces more than one protein of 130-135 kD in its insecticidal crystal delta-endotoxin. We describe an indirect method of assessing the relative contribution to toxicity of two of these protoxins using monospecific antibodies directed against their active proteolytic products. Our results show that one toxin is active against Spodoptera frugiperda but not Choristoneura fumiferana cells in vitro, while the other lyses C. fumiferana but not S. frugiperda cells. There is no indication of synergism between these toxins in vitro.  相似文献   

7.
When the gene for the mosquitocidal protein CryIVA was expressed in two strains of Bacillus thuringiensis (Bt) cured of their resident delta-endotoxin genes, the protein accumulated as large inclusions. The inclusions produced in the Bt subsp. kurstaki recipient strain were twice as soluble at alkaline pH as the inclusions produced in Bt subsp. israelensis. Solubilized protoxins were activated by treatment with mosquito gut extracts or trypsin for varying lengths of time and tested for in vitro cytotoxicity on cell lines of three genera of mosquito. CryIVA treated with any of the mosquito gut extracts for 6 h showed significant toxicity against Anopheles gambiae cells and slight activity on Culex quinquefasciatus cells. For CryIVB, the only significant cytotoxicity observed was against Aedes aegypti cells after treatment with Aedes gut extract. In in vivo bioassays, both CryIVA, purified from either of the Bt recipient strains, and CryIVB inclusions were similarly toxic to A. aegypti and A. gambiae larvae but CryIVA was 25-fold more toxic to C. quinquefasciatus. Synergism in vivo between the two toxins was revealed when results from assaying single toxins and mixtures were compared. Mixtures of CryIVA and CryIVB proved to be 5-fold more toxic to Culex than either toxin used singly and showed a reduced but similar synergism when tested against Aedes and Anopheles larvae. The synergism was not duplicated in vitro using cell lines from these three insects.  相似文献   

8.
Toxicity of Bacillus thuringiensis subsp. israelensis (ONR-60A/WHO 1897) parasporal crystals to three medically important mosquito larvae is described. The numbers of larvae killed are in relation to crystal dry weight. The crystals are lethally toxic to Aedes aegypti Linnaeus (mean 50% lethal concentration [LC50] = 1.9 x 10(-4) micrograms/ml), Culex pipiens var. quinquefasciatus Say (LC50 = 3.7 x 10(-4) micrograms/ml), and Anopheles albimanus Wiedemann (LC50 = 8.0 x 10(-3) micrograms/ml). Purfied crystals of B. thuringiensis subsp. kurstaki, which are toxic to lepidopteran insects, are ineffective against the mosquito larvae. Likewise, B. thuringiensis subsp. israelensis parasporal crystals are not efficacious for larvae of the lepidopteran, Manduca sexta.  相似文献   

9.
Toxicity of Bacillus thuringiensis subsp. israelensis (ONR-60A/WHO 1897) parasporal crystals to three medically important mosquito larvae is described. The numbers of larvae killed are in relation to crystal dry weight. The crystals are lethally toxic to Aedes aegypti Linnaeus (mean 50% lethal concentration [LC50] = 1.9 x 10(-4) micrograms/ml), Culex pipiens var. quinquefasciatus Say (LC50 = 3.7 x 10(-4) micrograms/ml), and Anopheles albimanus Wiedemann (LC50 = 8.0 x 10(-3) micrograms/ml). Purfied crystals of B. thuringiensis subsp. kurstaki, which are toxic to lepidopteran insects, are ineffective against the mosquito larvae. Likewise, B. thuringiensis subsp. israelensis parasporal crystals are not efficacious for larvae of the lepidopteran, Manduca sexta.  相似文献   

10.
Bacillus thuringiensis was isolated from 36 of 50 residue samples obtained from an animal feed mill (a stored-product environment). Of 710 selected colonies having Bacillus cereus-B. thuringiensis morphology isolated from the samples, 477 were classified as B. thuringiensis because of production of parasporal delta-endotoxin crystals. There was a diverse population of B. thuringiensis, as revealed by differentiation of the isolates into 36 subgroups by using (i) their spectra of toxicity to the lepidopterans Heliothis virescens, Pieris brassicae, and Spodoptera littoralis and the dipteran Aedes aegypti and (ii) their parasporal crystal morphology. A total of 55% of the isolates were not toxic to any of these insects at the concentrations used in the bioassays; 40% of all isolates were toxic to one or more of the Lepidoptera; and 20, 1, and 1% of the isolates were toxic to only P. brassicae, H. virescens, and S. littoralis, respectively. The most frequent toxicity was toxicity to P. brassicae (36% of all isolates); 18% of the isolates were toxic to A. aegypti (5% exclusively), 10% were toxic to H. virescens, and 4% were toxic to S. littoralis. Toxicity to P. brassicae was more often linked with toxicity to H. virescens than with toxicity to S. littoralis. The frequency of toxicity was significantly greater in isolates that produced bipyramidal crystals than in isolates that produced irregular pointed, irregular spherical, rectangular, or spherical crystals.  相似文献   

11.
Bacillus thuringiensis var. israelensis crystal proteins were purified by FPLC on a Mono Q column to yield 130, 65, 28, 53, 30-35 and 25 kDa proteins. All the purified proteins killed Aedes aegypti larvae after citrate precipitation, but the 65 kDa protein was the most toxic. A precipitated mixture of 27 and 130 kDa proteins was almost as toxic as solubilized crystals. In assays against a range of insect cell lines, the activated form (25 kDa) of the 27 kDa protein was generally cytotoxic with the lowest LC50 values in vitro. By contrast, the activated forms of the 130 kDa and 65 kDa protoxins (53 kDa and 30-35 kDa proteins, respectively) were much more specific than the 25 kDa protein in their action on dipteran cells, and each showed a unique toxicity profile which, in the case of the 130 kDa preparation, was restricted to Anopheles and Culex cell lines.  相似文献   

12.
A cloned CryIVB toxin was purified from a cured strain of Bacillus thuringiensis (BT) containing the cryIVB gene on the recombinant plasmid Cam135. Solubilized protoxin was treated with Aedes gut extract or trypsin for varying times and tested for toxicity in vitro on three dipteran and one lepidopteran cell line. Treatment with the Aedes extract but not trypsin, produced an active toxin which lysed only Aedes aegypti cells out of those tested. This activation was time-dependent reaching a maximum after 6 h. Both the Aedes extract-treated and trypsin-treated toxin killed A. aegypti larvae, but this toxicity declined rapidly with increasing time of exposure to the proteolytic preparations.  相似文献   

13.
Phage display is an in vitro method for selecting polypeptides with desired properties from a large collection of variants. The insecticidal Cry toxins produced by Bacillus thuringiensis are highly specific to different insects. Various proteins such as cadherin, aminopeptidase-N (APN) and alkaline phosphatase (ALP) have been characterized as potential Cry-receptors. We used phage display to characterize the Cry toxin-receptor interaction(s). By employing phage-libraries that display single-chain antibodies (scFv) from humans or from immunized rabbits with Cry1Ab toxin or random 12-residues peptides, we have identified the epitopes that mediate binding of lepidopteran Cry1Ab toxin with cadherin and APN receptors from Manduca sexta and the interaction of dipteran Cry11Aa toxin with the ALP receptor from Aedes aegypti. Finally we displayed in phages the Cry1Ac toxin and discuss the potential for selecting Cry variants with improved toxicity or different specificity.  相似文献   

14.
15.
Two genes encoding insecticidal crystal proteins from Bacillus thuringiensis subsp. kurstaki HD-1 were cloned and sequenced. Both genes, designated cryB1 and cryB2, encode polypeptides of 633 amino acids having a molecular mass of ca. 71 kilodaltons (kDa). Despite the fact that these two proteins display 87% identity in amino acid sequence, they exhibit different toxin specificities. The cryB1 gene product is toxic to both dipteran (Aedes aegypti) and lepidopteran (Manduca sexta) larvae, whereas the cryB2 gene product is toxic only to the latter. DNA sequence analysis indicates that cryB1 is the distal gene of an operon which is comprised of three open reading frames (designated orf1, orf2, and cryB1). The proteins encoded by cryB1 and orf2 are components of small cuboidal crystals found in several subspecies and strains of B. thuringiensis; it is not known whether the orf1 or cryB2 gene products are present in cuboidal crystals. The protein encoded by orf2 has an electrophoretic mobility corresponding to a molecular mass of ca. 50 kDa, although the gene has a coding capacity for a polypeptide of ca. 29 kDa. Examination of the deduced amino acid sequence for this protein reveals an unusual structure which may account for its aberrant electrophoretic mobility: it contains a 15-amino-acid motif repeated 11 times in tandem. Escherichia coli extracts prepared from cells expressing only orf1 and orf2 are not toxic to either test insect.  相似文献   

16.
A gene from Bacillus thuringiensis subsp. san diego that is responsible for a delta-endotoxin active against Colorado potato beetle and some other Coleoptera was sequenced and shown to have surprising regional homology with both lepidopteran and dipteran active delta-endotoxins from other strains of B. thuringiensis. Unlike the lepidopteran active toxins from B. thuringiensis subsp. kurstaki that exist as approx. 130-kDa protoxins and form bipyramidal crystalline inclusions, the coleopteran toxic protein forms a square-shaped crystal composed of an approx. 65-kDa protein. Comparisons of the gene sequences encoding the active portions of these protoxins indicate conservation of N-terminal hydrophilic and hydrophobic regions, and suggest a distant ancestral origin for these insecticidal proteins.  相似文献   

17.
An insecticidal protein gene from Bacillus thuringiensis var. aizawal was cloned in Escherichia coli. The cloned gene expressed at a high level and the synthesized protein appeared as an insoluble, phase-bright inclusion in the cytoplasm. These inclusions were isolated by density gradient centrifugation, the isolated protein was activated in vitro by different proteloytic regimes and the toxicity of the resulting preparations was studied using insect cells grown in tissue culture. The inclusions consisted of a 130 kDa polypeptide which was processed to a protease-resist-ant 55 kDa protein by tryptic digestion. This preparation lysed lepidopteran (Choristoneura fumiferana) CFI ceils but not dipteran (Aedes albopictus) calls. When the crystal protein was activated by sequential treatment, first with trypsin and then with Aedes aegypti gut proteases, the resulting 53 kDa polypeptide was now toxic only to the dipteran cells and not to the lepidopteran cells. Thus the dual specificity of this var. aizawal toxin results from differential proteolytic processing of a single protoxin. The trypsin-activated preparation was weakly active against Spodoptera frugiperda cells. Membrane binding studies of the trypsin-activated toxin revealed a 68 kDa protein in the lepidopteran ceil membranes, which may be the receptor for this toxin.  相似文献   

18.
Five media, formulated from the seeds of five legume varieties, dried cow blood, and mineral salts, were assessed for the growth and production of insecticidal properties of Bacillus thuringiensis subsp. israelensis. Bacterial powders prepared from the broth cultures were assayed against the larvae of Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A standard primary powder of B. thuringiensis subsp. israelensis (IPS78) was included in the assay for comparison. Good growth was obtained in all the media, and all powders were effective against the three types of mosquito larvae. The powder containing ground seeds of Voandzeia subterranean was the most effective and compared favorably with the standard (IPS78). The concentrations required to kill 50% of the larvae of Aedes aegypti, C. quinquefasciatus, and Anopheles gambiae were 1.13 X 10(-2) +/- 1.79 X 10(-3), 1.83 X 10(-2) +/- 2.55 X 10(-3), and 2.25 X 10(-2) +/- 1.88 X 10(-3) micrograms/ml, respectively. This investigation shows that the medium containing V. subterranean can be used for the production of B. thuringiensis subsp. israelensis primary powder.  相似文献   

19.
Five media, formulated from the seeds of five legume varieties, dried cow blood, and mineral salts, were assessed for the growth and production of insecticidal properties of Bacillus thuringiensis subsp. israelensis. Bacterial powders prepared from the broth cultures were assayed against the larvae of Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A standard primary powder of B. thuringiensis subsp. israelensis (IPS78) was included in the assay for comparison. Good growth was obtained in all the media, and all powders were effective against the three types of mosquito larvae. The powder containing ground seeds of Voandzeia subterranean was the most effective and compared favorably with the standard (IPS78). The concentrations required to kill 50% of the larvae of Aedes aegypti, C. quinquefasciatus, and Anopheles gambiae were 1.13 X 10(-2) +/- 1.79 X 10(-3), 1.83 X 10(-2) +/- 2.55 X 10(-3), and 2.25 X 10(-2) +/- 1.88 X 10(-3) micrograms/ml, respectively. This investigation shows that the medium containing V. subterranean can be used for the production of B. thuringiensis subsp. israelensis primary powder.  相似文献   

20.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号