首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrroline-5-carboxylate reductase catalyzes the final step in proline synthesis by NAD(P)H-dependent reduction of pyrroline-5-carboxylate. We have purified and characterized this enzyme from human erythrocytes. Purification to homogeneity (approximately 600,000-fold) was accomplished by sonication, ultracentrifugation, 2',5'-ADP-Sepharose affinity chromatography, and DEAE-Sephacel ion exchange chromatography. The enzyme runs as a single band of 30,000 Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sizing chromatography under nondenaturating conditions demonstrates activity in the 300,000-350,000 Mr range, suggesting that the native enzyme exists as a 10- to 12-mer. The purified enzyme exhibits kinetic characteristics similar to those previously described for whole red cell homogenates. The Vmax is 10-fold higher and the Km for pyrroline-5-carboxylate is 7-fold higher with NADH versus NADPH as cofactor. The affinity for NADPH is 15-fold higher than that for NADH. Erythrocyte pyrroline-5-carboxylate reductase is competitively inhibited by NADP+. Unlike the enzyme from some other sources, erythrocyte pyrroline-5-carboxylate reductase is not inhibited by proline or ATP. Double label studies using [14C]pyrroline-5-carboxylate and [3H]exNADPH in the presence of both NADH and NADPH were performed to determine the preferred source of reducing equivalents. In the presence of physiologic concentrations of pyrroline-5-carboxylate and both pyridine nucleotides, all of the reducing equivalents came from NADPH. We suggest that, in some cell types including human erythrocytes, a physiologic function of pyrroline-5-carboxylate reductase is the generation of NADP+.  相似文献   

2.
An enzyme has been purified to homogeneity from barley seedlings which has `proline dehydrogenase' and the pyrroline-5-carboxylic acid reductase activities. The purification achieved is 39,000-fold as calculated from the proline dehydrogenase activity. The subunit molecular weight of the protein is 30 kilodaltons. The native enzyme has molecular weights up to 480 kilodaltons, depending on the buffer environment. From the pH profiles, the specific activities and thermodynamic considerations, it is concluded that the plant proline dehydrogenase functions in vivo as a pyrroline-5-carboxylate reductase.  相似文献   

3.
Based on localization and high activities of pyrroline-5-carboxylate reductase and proline dehydrogenase activities in soybean nodules, we previously suggested two major roles for pyrroline-5-carboxylate reductase in addition to the production of the considerable quantity of proline needed for biosynthesis; namely, transfer of energy to the location of biological N2 fixation, and production of NADP+ to drive the pentose phosphate pathway. The latter produces ribose-5-phosphate which can be used in de novo purine synthesis required for synthesis of ureides, the major form in which biologically fixed N2 is transported from soybean root nodules to the plant shoot. In this paper, we report rapid induction (in soybean nodules) and exceptionally high activities (in nodules of eight species of N2-fixing plants) of pentose phosphate pathway and pyrroline-5-carboxylate reductase. There was a marked increase in proline dehydrogenase activity during soybean (Glycine max) ontogeny. The magnitude of proline dehydrogenase activity in bacteroids of soybean nodules was sufficiently high during most of the time course to supply a significant fraction of the energy requirement for N2 fixation. Proline dehydrogenase activity in bacteroids from nodules of other species was also high. These observations support the above hypothesis. However, comparison of pentose phosphate pathway and pyrroline-5-carboxylate reductase activities of ureide versus amide-exporting nodules offers no support. The hypothesis predicts that pyrroline-5-carboxylate and pentose phosphate pathway activities should be higher in ureide-exporting nodules than in amide-exporting nodules. This predicted distinction was not observed in the results of in vitro assays of these activities.  相似文献   

4.
These studies indicate that the interconversions of delta 1-pyrroline-5-carboxylate and proline can function as a shuttle that generates extra-mitochondrial NADP+ and transfers hydride ions into mitochondria in a cell-free rat liver system. A phosphate-free buffer with high concentrations of triethanolamine and 2-mercaptoethanol prevented the cold inactivation of pyrroline-5-carboxylate reductase (EC 1.5.1.2) in liver extracts. This enzyme had an apparent KmNADPH that was 2% of the apparent KmNADH X VmaxNADPH was approx. 50% of VmaxNADH. Unlabeled proline was converted to [5-3H]proline in incubations containing liver soluble fraction, mitochondria and a [4S-3H]NADPH generating system. This demonstrated one turn of the proposed shuttle in a homologous liver system. [5-3H]Proline production increased linearly over 60 min and decreased by 87% or more when specific components were eliminated. Rotenone was required for maximal activity, suggesting that inhibition of delta 1-pyrroline-5-carboxylate efflux would be required for significant shuttle activity in vivo. Both the relative concentrations of NADPH and NADH in liver cytosol and the kinetic characteristics of liver pyrroline-5-carboxylate reductase predict that the described shuttle should be overwhelmingly linked to NADPH rather than NADH. A NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle may occur in hepatocytes and function at specific times to regulate pathways limited by cytosolic [NADP+].  相似文献   

5.
6.
Osmoregulation in Brevibacterium lactofermentum was studied. Proline was accumulated up to approximately 35mg/g dry cell weight in the cells of a wild strain of the bacterium grown under osmotic stress. The osmotic tolerance of a proline auxotroph mutant obtained from the bacterium was lower than that in the wild strain. The activity of pyrroline-5-carboxylate reductase, one of the enzymes in the proline biosynthetic pathway, increased about 3-fold when the cells of B. lactofermentum were grown under osmotic stress. These data indicated that proline is important in osmoregulation in the bacterium.  相似文献   

7.
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.  相似文献   

8.
The habituated callus is a vitrified tissue which has two main biochemical characteristics both leading to production of toxic forms of oxygen: first the blockage of the porphyrin pathway and a lack of H2O2 detoxifying enzymes (catalase and peroxidases); secondly a deviation of the nitrogen metabolism induced by NH3 accumulation. Ammonia detoxification is ensured by increased glutamate dehydrogenase activity and accumulation of both proline and polyamines. A putative linkage between proline synthesis and the HMP pathway, as proposed for animal proliferating tissues (Phang 1985), might explain a high purine biosynthesis and cytokinin autonomy.Abbreviations FFA free fatty acids - 6PG-DH 6-phosphogluconate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - GLU glutamate - GDH glutamate dehydrogenase - GR glutathion reductase - H habituated callus - HMP hexoses-monophosphate - IAA indolyl-acetic acid - LOX lipoxygenase - MDA malondialdehyde - N normal callus - OAT ornithine aminotransferase - ORN ornithine - PAs polyamines - P5C pyrroline-5-carboxylate - P5CR pyrroline-5-carboxylate reductase - PP-ribose-P phosphoribosyl pyrophosphate - SOD superoxide dismutase  相似文献   

9.
Proline is an important osmolyte appearing as the result of salt stress response of plants. In the present study, we measured the proline concentration, activities of pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR), and proline dehydrogenase (PDH) key regulatory enzymes in the biosynthesis and degradation of proline in the acclimated (AC20) and the non-acclimated (NAC) cucumber cell suspension cultures subjected to moderate (150 mM NaCl; AC20–150, NAC-150, respectively) and severe (200 mM NaCl; AC20–200, NAC-200, respectively) salt stress. The data showed that salt stress brought about a linear increase in proline content in both types of cultures. However, in the acclimated culture proline accumulation was observed earlier, in third hour after stress. Only in the acclimated culture moderate and severe stresses up-regulated P5CS activity throughout the experiment, whereas the activity of P5CR grew in response to both NaCl concentrations only in 24th and 48th hour. The severe salt stress resulted in decrease in P5CR in NAC-200 cultures. In response to salt stress, both types of cell suspension cultures reacted with decline in PDH activity below the spectrophotometrically detected level. Cell cultures vigor correlated with salt concentration and time of exposure to the stress factor. Both NaCl concentrations caused linear decline in vigor of the non-acclimated culture up to 80–90 % at the end of the experiment, whereas in the acclimated culture significant decrease by about 30–40 % was reached in 24th hour after stress. The presented data suggest that acclimation to salt stress up-regulated proline synthesis enzyme activity and caused intensive accumulations of proline by inhibiting its oxidation.  相似文献   

10.
Enzymes of proline biosynthesis and proline degradation which act on the same compound, delta 1-pyrroline-5-carboxylate, are physically separated in yeast cells. The enzyme responsible for the final step in proline biosynthesis, pyrroline-5-carboxylate reductase, converts pyrroline-5-carboxylate to proline and is located in the cytoplasm. The last enzyme in the proline degradative pathway, pyrroline-5-carboxylate dehydrogenase, converts pyrroline-5-carboxylate to glutamate and is found in the particulate fraction of the cell, presumably in the mitochondrion. By subcellular compartmentation, yeast cells avoid futile cycling between proline and pyrroline-5-carboxylate.  相似文献   

11.
Pyrroline-5-carboxylate reductase, which required reduced pyridine nucleotide and Δ′-pyrroline-5-carboxylate for proline synthesis, was isolated from pumpkin cotyledons. The enzyme was found in the soluble fraction and had a 4.5-fold greater activity with NADH than NADPH. The enzyme was inhibited by NH2OH, NADP, ATP and slightly by proline. Glutathione or pyridoxal-5-phosphate had little effect on enzyme activity. The enzyme had a pH optimum between 7·0 and 7·6 and was not inhibited by high concentrations of NADH or Δ′-pyrroline-5-carboxylate.  相似文献   

12.
Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues.   总被引:5,自引:4,他引:1       下载免费PDF全文
The direction and capacity for the metabolism of delta1-pyrroline-5-carboxylate in a number of rat tissues ere investigated by measuring the activities of delta1-pyrroline-5-carboxylate reductase, delta1-pyrroline-5-carboxylate dehydrogenase and proline oxidase. Each of these enzymes catalyzed unidirectional reactions in which delta1-pyrroline-5-carboxylate was either the substrate or product. Delta1-Pyrroline-5-carboxylate reductase activities that were much higher than any previously reported were obtained by avoiding its inactivation in the cold. delta1-Pyrroline-5-carboxylate dehydrogenase, previously said to act on both D- and L-isomers of delta1-pyrroline-5-carboxylate, acted only on the L-isomer. Proline oxidase could not be measured in two adult tissues, in which an inhibitor appeared after birth. The activity of delta1-pyrroline-5-carboxylate reductase significantly paralleled that of ornithine aminotransferase in 23 tissues, showing a widespread potential for proline synthesis from ornithine. An independently distributed potential in fewer tissues for proline degradation to alpha-oxoglutarate was shown by the significantly similar tissue distributions of proline oxidase. Delta1-pyrroline-5-carboxylate dehydrogenase and glutamate dehydrogenase. Reverse metabolism of glutamate or proline to ornithine would be atypical in rat tissues with these distributions of unidirectional enzyme reactions.  相似文献   

13.
Germination/growth of wheat (Triticum aestivum L., cv. Zimai 1) seeds and changes in the levels of proline and protein as well as in activities of key enzymes involved in proline metabolism in response to salinity-, heat-stresses and their cross-stress were studied. With decreasing water potential caused by increasing concentrations of NaCl, germination percentage, fresh weight of seedlings and protein amount markedly decreased, whereas proline amount slightly increased. The activities of pyrroline-5-carboxylate synthetase (P5CS), ornithine aminotransferase (OAT), and proline dehydrogenase (PDH) peaked at ?0.2 MPa water potential. Germination percentage and amounts of proline and protein increased as germination temperature elevated to 25°C from 15°C, and decreased above 25°C; fresh weight of seedlings increased to 30°C from 15°C, and decreased above 30°C. However, the activities of P5CS, OAT and PDH gradually decreased with elevaing temperature. Seeds pretreated at 33°C or in ?0.8 MPa NaCl solution for various time length increased tolerance to subsequent salt + water stress or heat stress, as measured by germination percentage and fresh weight of seedlings 5 days after beginning of experiment. The acquisition of cross-tolerance resulting in limitation of negative stress effects does not relate directly to proline level and activities of P5CS, OAT and PDH involved in proline metabolism. Proline amount as measured four days or later after stress imposition cannot be considered a symptom of salt-, water- and heat-stress injury or an indicator of the resistance.  相似文献   

14.
L-pyrroline-5-carboxylic acid, an intermediate in the interconversions of glutamic acid, ornithine and proline, is a potent stimulator of the hexose-monophosphate pentose pathway in cultured human fibroblasts. These studies suggest that pyrroline-5-carboxylate reductase, which catalyzes the conversion of pyrroline-5-carboxylate to proline coupled with the oxidation of NADPH, provides the NADP for the observed activation of the hexose-monophosphate pentose pathway.  相似文献   

15.
The levels of 11 enzymes, most of them involved in the metabolism of ornithine, were measured in whole upper intestine, or in duodenum, small intestine and colon of adult rats. The developmental formations in small intestine of arginase, ornithine aminotransferase, and ornithine transcarbamylase were compared with those in liver. Changes with age (late gestation of adult) of the intestinal activities of pyrroline-5-carboxylate reductase, proline oxidase and glutamyl transpeptidase are also described. The results suggest that the proximal part of the intestine is well endowed with enzymes involved in the conversion of ornithine to proline as well as to citrulline. Fetal intestine is rich in proline oxidase and pyrroline-5-carboxylate reductase. The peak levels of ornithine aminotransferase found in intestine in the first 3 postnatal weeks were higher than seen in any other rat tissue. Some of the properties of arginase, ornithine aminotransferase and pyrroline-5-carboxylate reductase in small intestine were compared with those in liver. Isozymes of arginase in small intestine differed from those in liver; the kinetic properties of ornithine aminotransferase were similar in the two tissues. In intestine of 14-day-old rats, the ornithine aminotransferase reaction was reversible, forming ornithine from pyrroline-5-carboxylate. The intestinal pyrroline-5-carboxylate reductase was cold-labile as was the hepatic enzyme in rat.  相似文献   

16.
Metabolism of arginine in lactating rat mammary gland.   总被引:3,自引:1,他引:2       下载免费PDF全文
Significant activities of the four enzymes needed to convert arginine into proline and glutamate (arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and pyrroline-5-carboxylate dehydrogenase) develop co-ordinately in lactating rat mammary glands in proportion to the increased production of milk. No enzymes were detected to carry out the reactions of proline oxidation or reduction of glutamate to pyrroline-5-carboxylate. Minces of the gland converted ornithine into proline and into glutamate plus glutamine. These conversions increased during the cycle of lactation in proportion to the increased milk production and to the content of the necessary enzymes. The minced gland did not convert labelled ornithine into citrulline, confirming the absence from the gland of a functioning urea cycle, and did not convert labelled proline or glutamate into ornithine. A metabolic flow of labelled arginine to proline and glutamate in mammary gland was confirmed in intact animals with experiments during which the specific radioactivity of proline in plasma remained below that of the proline being formed from labelled arginine within the gland. It was concluded that arginase in this tissue had a metabolic role in the biosynthesis of extra proline and glutamate needed for synthesis of milk proteins.  相似文献   

17.
Tobacco (Nicotiana tabacum L. var Wisconsin 38) cells that are adapted to 428 millimolar NaCl accumulate proline mainly due to increased synthesis from glutamate. These cells were used to evaluate the possible role of Δ1-pyrroline-5-carboxylate reductase in the regulation of proline biosynthesis. No increase in the specific activity of Δ1-pyrroline-5-carboxylate reductase in crude extracts throughout the growth cycle was observed in NaCl-adapted cells compared to unadapted cells. The enzyme from both cell types was purified extensively. On the basis of affinity for the substrates NADPH, NADH, and Δ1-pyrroline-5-carboxylate, pH profiles, chromatographic behavior during purification, and electrophoretic mobility of the native enzyme, the activities of the enzyme from the two sources were similar. These data suggest that the NaCl-dependent regulation of proline synthesis in tobacco cells does not involve induction of pyrroline-5-carboxylate isozymes or changes in its kinetic properties.  相似文献   

18.
The levels of 11 enzymes, most of them involved in the metabolism of orithine, were measured in whole upper intestine, or in duodenum, small intestine and colon of adult rats. The developmental formations in small intestine of arginase, orithine aminotransferase, and orithine transcarbamylase were compared with those in liver. Changes with age (late gestation to adult) of the intestinal activities of pyrroline-5-carboxylate reductase, proline oxidase and glutamyl transpeptidase are also described.The results suggests that the proximal part of the intestine is well endowed with enzymes involved in the conversion of ornithine to proline as well as to citrulline. Fetal intestine is rich in proline oxidase and pyrroline-5-carboxylate reductase. The peak levels of ornithine aminotraferase found in intestine in the first 3 postnatal weeks were higher than seen in any other rat tissue.Some of the properties of arginase, ornithine aminotransferase and pyrroline-5-carboxylate reductase in small intestine were compared with those in liver. Isozymes of arginase in small intestine differed from those in liver; the kinetic properties of ornithine aminotransferase were similar in the two tissues. In intestine of 14-day-old rats, the orithine aminotransferase reaction was reversible, forming ornithine from pyrroline-5-carboxylate. The intestinal pyrroline-5-carboxylate reductase was cold-labile as was the hepatic enzyme in rat.  相似文献   

19.
The effect of NaCl at sublethal concentration was observed on germinating seeds of salt-sensitive and -resistant rice cultivars with respect to the level of proline regulatory enzymes and the growth of seedlings on different days of early germination period. The two enzymes of proline biosynthesis and catabolism, Δ-pyrroline-5-carboxylate reductase and L-proline dehydrogenase, were taken into consideration to observe the effects of 100 mM NaCl on their activities in both rice cultivars. The activity of Δ-pyrroline-5-carboxylate reductase in salt-resistant cultivar was increased twice after 5 d in 100 mM NaCl. Simultaneously, the activity of L-proline dehydrogenase was decreased significantly. High activities of Δ-pyrroline-5-carboxylate reductase may be regarded as a biological marker for screening the sensitive and resistant cultivars of rice seed under NaCl-salinity.  相似文献   

20.
Chlorella saccharophila can utilize the amino acids arginine, glutamate. ornithine and proline as sole sources of nitrogen for growth. By comparison C. autotrophica utilized only arginine and ornithine. Following osmotic shock of Chlorella autotrophica from 50 to 150% artificial seawater rapid synthesis of proline (the main osmoregulatory solute in this alga) occurred in cells grown on arginine or citrulline. However, little proline synthesis occurred in ornithine-grown cells. Distribution of radiolabelled carbon from [14C]-arginine assimilation following osmotic shock of C. autotrophica agrees with the following pathway of arginine utilization: arginine→citrulline→ornithine→glutamate semialdehyde→pyrroline-5-carboxylate→proline. These 4 steps are catalysed by arginine deiminase (EC 3.5.3.6), citrullinase (EC 3.5.1.20), ornithine transaminase (EC 2.6.1.13) and pyrroline-5-carboxylate reductase (EC 1.5.1.2), respectively. Of these 4 enzymes, only arginine deiminase and pyrroline-5-carboxylate reductase were detected in the crude extract of the 2 Chlorella species. Arginine deiminase did not require specific cations for optimal activity. The deimi-nase showed maximal activity at pH 8.0 and followed Michaelis-Menten kinetics with an apparent Km for L-arginine of 0.085 m M for the C. autotrophica enzyme and 0.097 m M for that of C. saccharophila. The activity of arginine deiminase was not influen-ced by growing C. saccharophila on arginine. Ornithine competitively inhibited arginine deiminase with an apparent K, of 2.4 m M for the C. autotrophica enzyme, and 3.8 m M for that of C. saccharophila . Arginine utilization by Chlorella is discussed in relation to that of other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号