首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
-The synthesis of anthocyanin in red-cabbage is very sensitive to control by light, R/FR reversibility being effected by exposures of 5 min duration, The demonstration of this control does not depend upon a preceding irradiation of high-intensity light but depends upon the duration of incubation in darkness subsequent to irradiation. R/FR reversibility is well shown in seedlings kept in darkness for 48 hr after exposure but after 120 hr this reversibility is no longer evident. This is due to the fact that a further synthesis of anthocyanin occurs in unexposed seedlings and in FR and R/FR treated material in the period from 48 to 120 hr but does not occur in the R treatment after 48 hr. Reagents such as n-propanol which are believed to increase membrane permeability, greatly increase anthocyanin synthesis in dark grown material. n-PrOH also reverses the effect of 5 min FR irradiation but, by contrast with R light, does not promote PAL activity. It is concluded that the limitation to synthesis in material unexposed to light is substrate availability at the site of flavonoid biosynthesis, rather than the level of PAL activity. The evidence presented supports the hypothesis that R/FR reversible phytochrome action involves the control of the passage of substrate through a membrane to the site of anthocyanin biosynthesis.  相似文献   

3.
Protoplasts from dark-grown wheat (Triticum aestivum L.) maintained at a constant osmotic potential at 22°C, were found to swell upon red irradiation (R) and the effect was negated by subsequent far-red light (FR), indicating phytochrome involvement. Swelling only occurred when Ca2+ ions were present in the surrounding medium, or were added within 10 min after R. Furthermore, Mg2+, Ba2+ or K+ could not replace this requirement for Ca2+. The presence of K+ did not enhance the Ca2+-dependent swelling response. When the Ca2+-ionophore A 23187 was added to the medium, protoplasts swelled in the dark to the same extent as after R. Both the Ca2+-channelblocker Verapamil and La3+ inhibited R-induced swelling. It is proposed that R causes the opening of Ca2+-channels in the plasma membrane. Boyle-van't Hoff analyses of protoplast volume after R and FR are consistent with the conclusion that R irradiation causes changes in membrane properties.Abbreviations EDTA ethylenediaminetetraacetic acid - FR far-red light - nov non-osmotic-volume - Pfr FR-absorbing form of phytochrome - Pr R-absorbing form of phytochrome - R red light  相似文献   

4.
The regulation of endogenous levels of ascorbic acid in soybean by far-red absorbing form of phytochrome (Pfr) and by cryptic red light signal (CRS) was studied. Cryptic red light signal is produced by red light pre-irradiation of a photoreceptor other than far-red absorbing form of phytochrome (Pfr) and CRS amplifies the action of phytochrome. The endogenous level of ascorbic acid levels enhanced by phytochrome was amplified by CRS. The lifetime of CRS was from 0 to 2 h and the peak of enhancement of ascorbic acid due to CRS was between 16 to 24 h of dark incubation after the end of the treatment. CRS was found to be ineffective on UV-B enhanced endogenous levels of ascorbic acid.Key words: ascorbic acid, cryptic red light signal, glycine max, phytochrome, ultraviolet-BThe phytochrome mediated morphogenesis involves the conversion of Pr [red absorbing form] to Pfr [far-red absorbing form] and the magnitude of the response is dependent on Pfr/P tot ratio established at the end of the irradiation.1 In broom Sorghum anthocyanin synthesis induced by red light [R1] is reversible with far-red light. But a second red pulse [R2] given after the reversal resulted in increased anthocyanin production compared to the first pulse [R1]. When the red pulse was repeatedly given after every reversal with far-red, the anthocyanin production increased proportionately to the number of previously given pulses.2 Thus red pre-treatment induced a change in the cellular physiological state or change in content of a relevant substance[s] which is designated as Cryptic Red Light Signal [CRS] associated with red signal transduction.2 CRS was first characterized in detail in Broom Sorghum as Pfr amplifying signal produced by red pre-irradiation. CRS is inactive in the absence of Pfr but enhances the action of Pfr. CRS escapes reversal when the plants are exposed to far-red and is probably produced by a different species of phytochrome, distinct from the conventional reversible phytochrome.3We have investigated whether CRS influences other phytochrome regulated processes in plants in addition to anthocyanin synthesis. We chose another process, the synthesis of endogenous ascorbic acid, which is also regulated by conventional phytochrome.4 In soybean, the endogenous level of ascorbic acid is enhanced by conventional far-red reversible form of phytochrome. In addition, an independent UV-B photoreceptor [non reversible with far-red light] also enhances the endogenous synthesis of ascorbic acid in soybean. By using repeated pulses of red light, we have demonstrated that the Cryptic Red Signal is operative in soybean also and it amplifies the red light induced enhancement in the level of ascorbic acid. That CRS is active only in the presence of Pfr is demonstrated by the fact that pre-irradiation with red light is ineffective in amplifying UV-B induced enhancement of ascorbic acid levels. A similar observation on UV-B induced anthocyanin synthesis has been made in Broom Sorghum.2 A separate UV-B photoreceptor independent of phytochrome operates in the plants.5 Although CRS is presumably produced by pre-irradiation with red light, it does not enhance UV-B induced anthocyanin synthesis or ascorbic acid synthesis in the absence of formation of Pfr by the second red pulse.The life-time of CRS was determined as 6 h in 20°C and 3 h in 24°C grown seedlings of Broom Sorghum with reference to anthocyanin synthesis.2 The life-time of CRS determined in soybean seedlings grown at 25°C was upto 1 h.6 Since growing seedlings at a low temperature enhanced the effectiveness of CRS in Broom Sorghum, it was concluded that low temperature may either extend the lifetime of CRS or generate higher amount of CRS.2 Although the exact nature of CRS is yet to be analyzed, work in our laboratory has established the universal nature of this signal and evidences have been obtained for CRS effect in promoting red light induced hypocotyls inhibition in Cucumber seedlings and also red light induced synthesis of betacyanins in Amaranthus seedlings (submitted for publication).  相似文献   

5.
Nitrate reductase (NR, NADH:nitrate oxidoreductase, EC 1.6.6.1) from barley (Hordeum vulgare L. cv. Hassan) leaves was inactivated during a light-dark transition, losing approx. 50% of activity after 30 min of darkness. The dark inactivation was reversed by illumination of the seedlings, the kinetics of reactivation being similar to those of inactivation. High extractable NR activity and significant differences between illuminated and darkened leaves were observed in media containing EDTA and inorganic phosphate (Pi). Addition of Ca2+ ions during extraction and assay decreased NR activity from illuminated and darkened leaves, enhancing the light-dark difference. While no clear correlation could be found between irradiance and NR activity, a hyperbolic correlation appeared between extractable NR activity and in-vivo rates of CO2 fixation, indicating that NR activation follows saturation kinetics with respect to CO2 fixation. Furthermore, hexoses and hexose-phosphates fed to the leaves via the transpiration stream protected against the dark-inactivation of NR. The results indicate that carbon-assimilation products are regulatory factors of NR activity in barley leaves, mediating both the light-dark modulation of NR and its dependence upon CO2 fixation.  相似文献   

6.
Light and dopamine regulate many physiological functions in the vertebrate retina. Light exposure decreases cyclic AMP formation in photoreceptor cells. Dopamine D4 receptor (D4R) activation promotes light adaptation and suppresses the light‐sensitive pool of cyclic AMP in photoreceptor cells. The key signaling pathways involved in regulating cyclic AMP in photoreceptor cells have not been identified. In the present study, we show that the light‐ and D4R‐signaling pathways converge on the type 1 Ca2+/calmodulin‐stimulated adenylyl cyclase (AC1) to regulate cyclic AMP synthesis in photoreceptor cells. In addition, we present evidence that D4R activation tonically regulates the expression of AC1 in photoreceptors. In retinas of mice with targeted deletion of the gene (Adcy1) encoding AC1, cyclic AMP levels and Ca2+/calmodulin‐stimulated adenylyl cyclase activity are markedly reduced, and cyclic AMP accumulation is unaffected by either light or D4R activation. Similarly, in mice with disruption of the gene (Drd4) encoding D4R, cyclic AMP levels in the dark‐adapted retina are significantly lower compared to wild‐type retina and are unresponsive to light. These changes in Drd4?/? mice were accompanied by significantly lower Adcy1 mRNA levels in photoreceptor cells and lower Ca2+/calmodulin‐stimulated adenylyl cyclase activity in retinal membranes compared with wild‐type controls. Reduced levels of Adcy1 mRNA were also observed in retinas of wild‐type mice treated chronically with a D4R antagonist, L‐745870. Thus, activation of D4R is required for normal expression of AC1 and for the regulation of its catalytic activity by light. These observations illustrate a novel mechanism for cross‐talk between dopamine and photic signaling pathways regulating cyclic AMP in photoreceptor cells.  相似文献   

7.
Extraction with EDTA of lyophilized and lysozyme treated preparations of the blue-green algae Anacystis nidulans resulted in loss of the capacity for photoevolution of O2. Reactivation was achieved by the addition of both cations: Mn2+ and Ca2+ (or to a smaller extent by Mn2+ and Sr2+). The dual requirement for Mn2+ and Ca2+ could be demonstrated when the O2 evolution under short saturating light flashes and the variable chlorophyll fluorescence associated with the reduction of the primary acceptor of Photosystem II was examined. The fluorescence experiments in addition showed that incorporation of the cations was a light dependent step, since the fluorescence rise only started after a lag period.  相似文献   

8.
Protoplasts isolated from the apical segments of Cuscuta reflexa exhibited blue light-sensitive PM-linked NADH oxidase activity and increased rate of Ca2+-uptake in presence of NADH in dark, which was also stimulated by blue light. Contrary to marginal inhibition by Con A treatment, the ATPase inhibitors significantly inhibited the Ca2+ uptake by the protoplasts both in dark and under blue light. The Ca2+-calmodulin antagonists, W-7 and calmidazolium, also inhibited Ca2+-uptake by protoplasts under similar conditions. The state of PM polarization was monitored by the fluorescent dye 9-amino acridine. It was observed that PM-linked NADH oxidation caused hyperpolarization of the membrane, the exposure of which to blue light resulted in membrane depolarization. The presence of Ca2+-calmodulin antagonists or Con A treatment completely abolished the blue light-induced membrane depolarization. It is argued that these actities at the PM, having some glycoproteic components, are functionally closely involved in blue light-induced signal transduction in Cuscuta  相似文献   

9.
Physiological processes controlled by phytochrome were examined in three near-isogenic genotypes of Sorghum bicolor, differing at the allele of the third maturity gene locus. Seedlings of 58M (ma3R ma3R) did not show phytochrome control of anthocyanin synthesis. In contrast, seedlings of 90M (ma3ma3) and 100M (Ma3Ma3) demonstrated reduced anthocyanin synthesis after treatment with far red and reversal of the far red effect by red. De-etiolation of 48-hour-old 90M and 100M dark-grown seedlings occurred with 48 hours of continuous red. Dark-grown 58M seedlings did not de-etiolate with continuous red treatment. Treatment of seedlings with gibberellic acid or tetcyclacis, a gibberellin synthesis inhibitor, did not alter anthocyanin synthesis. Levels of chlorophyll and anthocyanin were lower in light-grown 58M seedlings than in 90M and 100M. Etiolated seedlings of all three genotypes have similar amounts of photoreversible phytochrome. Crude protein extracts from etiolated seedlings were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose. Phytochrome was visualized with Pea-25, a monoclonal antibody directed to phytochrome from etiolated peas. The samples from all three genotypes contained approximately equivalent amounts of a prominent, immunostaining band at 126 kD. However, the sample from 58M did not show a fainter, secondary band at 123 kD that was present in 90M and 100M. The identity and importance of this secondary band at 123 kD is unknown. We propose that 58M is a phytochrome-related mutant that contains normal amounts of photoreversible phytochrome and normal phytochrome protein when grown in the dark.  相似文献   

10.
Dark synthesis of anthocyanin in Sinapis alba seedlings is greatly promoted by short treatments with n-propanol. The effect of n-propanol treatment is reversed by subsequent far-red light pulses. Photoreversibility kinetics suggest that n-propanol and red light act in the same way. However, phytochrome measurements and other control experiments suggest that n-propanol treatment does not lead to significant Pfr production, nor does it increase the effectiveness of any ‘dark’ Pfr present in the seedlings. The findings are difficult to explain in terms of Pfr as the sole effector of this phytochrome-mediated response.  相似文献   

11.
Takagi S  Nagai R 《Plant physiology》1988,88(1):228-232
In Vallisneria gigantea Graebner mesophyll cells, red light irradiation induces cytoplasmic streaming by decreasing the Ca2+ concentration in the cytoplasm, while far-red light irradiation inhibits it by increasing the concentration (S Takagi, R Nagai 1985 Plant Cell Physiol 26: 941-951). To examine the effects of light irradiation on Ca2+ fluxes across the cell membrane, protoplasts are isolated from the mesophyll cells. Changes in Ca2+ concentration in a solution bathing the protoplasts are monitored by spectrophotometry, using the Ca2+ -sensitive dye murexide. Red light irradiation induces an increase in Ca2+ concentration, which means an efflux of Ca2+ from the protoplasts. Subsequent far-red light irradiation produces a rapid decrease in Ca2+ concentration down to the dark control level; however, this is not observed in the presence of the Ca2+ -channel blocker nifedipine. Vanadate inhibits both the streaming and the Ca2+ efflux induced by red light irradiation. The results suggest that red light and far-red light control Ca2+ movements across the cell membrane, which in turn regulate the streaming.  相似文献   

12.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

13.
Many cellular processes, including pulsatile release of insulin, are triggered by increase of cytoplasmic Ca2+. This study examines how somatostatin affects glucose generation of cytoplasmic Ca2+ oscillations in mouse islets in absence and presence of tolbutamide blockade of the KATP channels. Ca2+ was measured with dual wavelength microflurometry in isolated islets loaded with the indicator Fura-2. Rise of glucose from 3 to 20 mM evoked introductory lowering of Ca2+ prolonged by activation of somatostatin receptors. During continued superfusion exposure to somatostatin triggered oscillations mediated by periodic increase from the basal level (absence of tolbutamide) or by periodic interruption of an elevated level (presence of tolbutamide). In the latter situation the oscillations were transformed into sustained elevation by activation of muscarinic receptors (acetylcholine) or increase of cyclic AMP (IBMX, 8-bromo-cyclic AMP, forskolin). The observed effect of cyclic AMP raises the question whether high proportions of the glucagon-producing α-cells promote steady-state elevation of Ca2+. In support for this idea somatostatin was found to trigger glucose-induced Ca2+ oscillations essentially in small islets that contain very few α-cells. The results indicate that somatostatin promotes glucose generation of Ca2+oscillations with similar characteristics both in the absence and presence of functional KATP channels.  相似文献   

14.
Excision and dark incubation of oat (Avena sativa L., var. Victory) leaves cause a sharp increase in protease activity, which precedes Chl loss. Both these senescence processes are inhibited by exogenously applied 1,3-diaminopropane (Dap), which occurs naturally in leaf segments. The inhibition of protease activity is much greater in vivo than in vitro, suggesting inhibition of protease synthesis as well as protease action by Dap. Chl breakdown in leaves of radish and broccoli, which also senesce rapidly in the dark, is only slightly inhibited by DaP. These differences between cereal and dicotyledonous plants are correlated with the natural occurrence of Dap in cereals. In the light, Dap promotes, rather than retards, the loss of Chl in oat leaves. This resembles previously described effects of other polyamines. Addition of Mg2+ to the medium does not antagonize this effect. In the dark, the accumulated Dap also inhibits ethylene production and decreases titer of other polyamines. Addition of Ca2+ to the incubation medium containing Dap competitively reduces the effects of Dap. Thus, Dap, like other polyamines, seems to require an initial attachment to a membrane site shared with Ca2+ before exerting its antisenescence action.  相似文献   

15.
Chlorophyll (Chl) synthesis in isolated Scots pine embryos depended on exogenous application of cytokinin (CK) and Ca2+. At a constant benzyladenine (BA) level (4.4×10?5 M) 10?4 to 10?2 M Ca2+ concentrations in mineral medium were optimum for Chl biosynthesis under both light and dark. At a zero or very low (10?6 M) concentration of external Ca2+, Chl synthesis was relatively more Ca2+-dependent in embryos cultured in darkness than in the light, which suggested that the light: (a) stimulated the transport of Ca2+ from external sources to cytosol, and/or (b) interacted with Ca2+ directly in the pathway of Chl biosynthesis. The need of external Ca2+ was evidenced in experiments with modulators of Ca2+-transport systems. The reduction of the inward current of Ca2+ from readily accessible external sites by chelating agent (ethylene glycol-bis (beta-aminoethyl ether-N,N,N′N′-tetraacetic acid, EGTA) and Ca2+-channel blockers canceled the formation of Chl. The effect of EGTA depended on the level of external Ca2+. Inhibitory action of Ca2+-channel blockers depended on their kind and concentration: at the 10?5 M concentration La3+>verapamil>nifedipine inhibited Chl formation. In the presence of Ca2+, the Ca2+-agonist A 23187 mimicked the BA effect and about 92% of Chl was synthesized as compared with the BA variant. Low concentrations of calmodulin antagonists reduced the amounts of Chl. Calmodulin was included in a second messenger system for BA action in promoting Chl biosynthesis in isolated Scots pine embryos.  相似文献   

16.
Stimulation of Root Elongation and Curvature by Calcium   总被引:1,自引:1,他引:0       下载免费PDF全文
Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca2+-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca2+-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may participate in root tropisms.  相似文献   

17.
Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti each have an active C4-dicarboxylic acid transport system dependent on an energized membrane. Free thiol groups are probably involved at the active site. Since EDTA inhibited succinate transport in R. leguminosarum bv phaseoli and R. loti, divalent cations may participate in the process; the activity was reconstituted by the addition of Ca2+ or Mg2+. However, EDTA had no effect on succinate transport in R. tropici, R. meliloti or R. trifolii strains. Ca2+ or Mg2+ had a similar effect on the growth rates of R. tropici and R. leguminosarum bv phaseoli; R. tropici did not require Ca2+ to grow on minimal medium supplemented with succinate but R. leguminosarum bv phaseoli required either or both of the divalent cations Ca2+ and Mg2+. A R. tropici Mu-dI (lacZ) mutant defective in dicarboxylic acid transport, was isolated and found unable to form effective bean nodules.The authors are with the Division of Biochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Avda, Italia 3318, 11.600 Montevideo, Uruguay  相似文献   

18.
Schwartz A 《Plant physiology》1985,79(4):1003-1005
Ca2+ (0.1-1.0 millimolar) accelerated dark-induced stomatal closure and reduced stomatal apertures in the light in epidermal peels of Commelina communis L. In contrast, ethyleneglycol-bis-(β-aminoethyl ether) N,N′tetraacetic acid (EGTA) (2 millimolar), a Ca2+ chelator, prevented closure in the dark and accelerated opening in the light. EGTA did not promote significant opening in the dark. It is therefore concluded that EGTA does not increase ion uptake into guard cells, but rather prevents ion efflux. Addition of EGTA to incubating solutions with 10 millimolar KCl resulted in steady state apertures of 15.6 micrometers, whereas in the absence of EGTA similar apertures required 55 millimolar KCl and 150 millimolar KCl was needed in the presence of 1 millimolar CaCl2. The results demonstrate the importance of Ca2+ in the regulation of stomatal closure and point to a role of Ca2+ in the regulation of K+ efflux from stomatal guard cells.  相似文献   

19.
The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore.  相似文献   

20.
Peter Dieter  Dieter Marmé 《Planta》1983,159(3):277-281
The kinetic properties of active Ca2+ transport into mitochondria and microsomal membrane vesicles prepared from coleoptiles of dark-and light-grown corn seedlings have been studied. The apparent values for K m and V max for Ca2+ of the mitochondrial transport system from dark-grown plants are about one order of magnitude higher than those from the microsomal transport system. Calmodulin has no effect on the Ca2+ accumulation into mitochondria whereas the apparent maximum transport velocity and affinity for Ca2+ of the microsomal Ca2+-transport system are both increased by calmodulin. When intact corn seedlings are irradiated with far-red light, the calmodulin-induced increase of the apparent maximum transport velocity and affinity for Ca2+ can no longer be observed. From these data it can be concluded that the low cytoplasmic Ca2+ concentration in the cytoplasm of coleoptile cells from dark-grown corn is maintained by a calmodulin-regulated Ca2+ pump. Irradiation with photomorphogenically active far-red light lowers the Ca2+-transport activity and thus causes an increase of the cytoplasmic, free-Ca2+ concentration. The physiological implications will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号