首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Seven cis-dominant mutations leading to the overproduction of the glucose-repressible alcohol dehydrogenase isozyme ADHII (structural gene, ADH2) in Saccharomyces cerevisiae have previously been shown to be due to insertion of a transposable element, Ty, in the 5' regulatory region of the ADH2 gene. We showed that although mating-competent cells (a, alpha, a/a, or alpha/alpha cells) overproduced both ADHII enzyme and ADH2 mRNA, mating-incompetent cells (a/alpha or ste-cells) produced much less ADHII enzyme and ADH2 mRNA. This mating type effect on ADH2 expression was greatest in the presence of a normally derepressing carbon source, glycerol, and much less apparent in the presence of a repressing carbon source, glucose. In addition, Ty insertion led to an aberrant carbon source response in mating-incompetent cells--the normally glucose-repressible ADHII becomes glycerol repressible. The mating type effect and aberrant carbon source response in mating-incompetent cells was specific for Ty-associated mutations in the 5' flanking region of the ADH2 gene in that a non-Ty mutation in the same region did not show these effects. Finally, Ty1 RNA levels also showed a/alpha, suppression, which was apparent only during growth on a nonfermentable carbon source such as glycerol. This suggests that Ty-mediated gene expression is subject to regulation by both mating competence and carbon catabolites.  相似文献   

2.
The amount of glucose-repressible alcohol dehydrogenase is regulated by the amount of its functional messenger RNA. ADHII2 protein was detected by a radioimmune assay and differentiated from ADHI, the classical ADH isozyme, by limited proteolysis with Staphylococcus aureus protease. When yeast containing the wild-type alleles for ADR2 (the ADH II structural locus) and for ADR1 (its positive regulatory gene) were pulse-labeled with [35S]methionine during derepression, radioactive label accumulated in the antibody-precipitated ADHII coterminously with the appearance of ADHII activity. The kinetics of functional ADHII mRNA appearance during derepression in this strain were shown to be the same as those for ADHII protein synthesis in vivo when RNA, extracted from derepressed cells, was translated in a wheat germ cell-free translation system.The role of the positive regulatory gene, ADR1, in ADHII expression was analyzed using two strains mutated at that locus. Yeast containing the adr1-1 allele are incapable of derepressing ADHII activity. When this strain was pulselabeled with [35S]methionine during derepression, approximately one-tenth to one-twentieth the level of ADHII protein synthesis was detected as in the wild-type strain. When RNA was extracted during derepression from cells containing the udr1-1 allele and translated in a wheat germ cell-free system, little functional ADHII mRNA was found to be present.The role of the ADR1 gene was further analyzed using a strain containing the ADR1-5c allele, which allows constitutive synthesis of ADHII activity. In this strain during glucose repression. ADHII protein synthesis and amount of functional mRNA were at levels comparable to those found for the wild-type strain after complete derepression. Similar kinetics of ADHII protein synthesis and of mRNA accumulation during derepression were observed in the strain carrying the ADR1-5c allele when compared to that carrying the ADR1 allele, but the absolute amounts were greater by three- to fourfold in cells containing the ADR1-5c allele. These results indicate that the ADR1 gene acts to increase the level of functional ADHII mRNA during derepression.  相似文献   

3.
4.
The yeast structural gene ADR2, coding for the glucose-repressible alcohol dehydrogenase (ADHII), has been isolated by complementation of function in transformed yeast. The chromosomal DNA from nine yeast strains with cis-dominant constitutive mutations (ADR3c) has been investigated by restriction enzyme analysis, using the cloned ADR2 DNA as a hybridization probe. Seven mutants appear to have insertions of approximately 5.6 kb near the 5′ end of the ADR2-coding region. Four of these insertions have the same restriction pattern as the yeast transposable element Tyl. Two differ from Tyl by the presence of an additional Hind III site, and a seventh insertion differs from Tyl at a number of restriction sites. All are inserted in the same orientation with respect to the structural gene. A DNA fragment containing the ADR2 gene and adjacent sequences from a constitutive mutant has been cloned and shown by heteroduplex analysis to contain an insertion near the 5′ end of the structural gene. The cloned insertion sequence hybridizes to multiple genomic DNA fragments, indicating that it contains a moderately repetitive sequence. Thus it appears that insertion of a transposable element near the 5′ terminus of the structural gene can produce constitutive expression of a normally glucose-repressed enzyme. Such insertions seem to be the most common way of generating cis-dominant constitutive mutations of ADHII.  相似文献   

5.
6.
Summary Yeast mutants deficient in the constitutive ADHI (adc1) were used for the isolation of mutants with deficiencies of the intermediary carbon metabolism, and of mutants defective in carbon catabolite derepression. Mutants were recognized by their inability to grow on YEP-glycerol and/or on ethanol synthetic complete medium. They were either defective in isocitrate lyase (icl1), succinate dehydrogenase (sdh1), or malate dehydrogenase (mdh1, mdh2), mdh-mutants could not uniformely be appointed to one of the known MDH isozymes. Homozygous mdh and sdh1 diploids are unable to sporulate.Three gene loci could be identified by mutants pleiotropically defective in many or all of the enzymes tested. In ccr1 mutants, derepression of isocitrate lyase, fructose-1,6-diphosphatase, ADHII and possibly of the cytoplasmic MDH is prevented, whereas the mitochondrial TCA-cycle enzymes, succinate dehydrogenase and malate dehydrogenase, are not significantly affected. CCR2 and CCR3 have quite similar action spectra. Both genes are obviously necessary for derepression of all enzymes tested. It could be shown that ccr1, ccr2 and ccr3 mutants are not respiratory deficient.  相似文献   

7.
C Wills  T Martin  T Melham  D Walker 《FEBS letters》1985,183(1):155-160
An activity gel assay for fructose-1,6-bisphosphatase (FBP), the enzyme catalyzing the final step in gluconeogenesis in yeast, has been developed which can be used in conjunction with spectrophotometric assays to show that it is tightly co-regulated with the inducible alcohol dehydrogenase, ADHII. Both enzymes are repressed coordinately in aerobically grown yeast by the addition of high levels of glucose or ethanol, and induced on minimal medium by the addition of yeast extract. A mutant deficient in FBP segregates independently of the ADHII structural gene locus. This phenomenon is of interest because of the discovery of Ciriacy [(1979) Mol. Gen. Genet. 176, 427-431] of mutants (ccr, or carbon catabolite repression) which repress both FBP and ADHII simultaneously, along with several other enzymes.  相似文献   

8.
9.
10.
A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane.  相似文献   

11.
Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.   总被引:26,自引:0,他引:26  
Summary Mutants with defective carbon catabolite repression have been isolated in the yeast Saccharomyces cerevisiae using a selective procedure. This was based on the fact that invertase is a glucose repressible cell wall enzyme which slowly hydrolyses raffinose to yield fructose and that the inhibitory effects of 2-deoxyglucose can be counteracted by fructose. Repressed cells were plated on a raffinose-2-deoxyglucose medium and the resistant cells growing up into colonies were tested for glucose non-repressible invertase and maltase. The yield of regulatory mutants was very high. All were equally derepressed for invertase and maltase, no mutants were obtained with only non-repressible invertase synthesis which was the selected function. A total of 61 mutants isolated in different strains were allele tested and could be attributed to three genes. They were all recessive. Mutants in one gene had reduced hexokinase activities, the other class, located in a centromere linked gene, had elevated hexokinase levels and was inhibited by maltose. Mutants in a third gene were isolated on a 2-deoxyglucose galactose medium and had normal hexokinase levels. A partial derepression was observed for malate dehydrogenase in all mutants. Isocitrate lyase, however, was still fully repressible.  相似文献   

12.
An integrated study on cell growth, enzyme activities and carbon flux redistribution was made to investigate how the central metabolism of Escherichia coli changes with the knockout of genes in the oxidative pentose phosphate pathway (PPP). Mutants deficient in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were constructed by disrupting the zwf and gnd genes and were grown in minimal media with two different carbon sources, such as glucose or pyruvate. It was shown that the knockout of either gnd or zwf gene did not affect the cell growth rate significantly, but the cellular metabolism was changed. While the specific substrate uptake rate and the specific carbon dioxide evolution rate for either mutant grown on glucose were higher than those obtained for the parent strain, these two rates were markedly decreased in mutants grown on pyruvate. The measurement of enzyme activities implied a significant change in metabolism, when alternative pathways such as the Entner–Doudoroff pathway (EDP) and the malic enzyme pathway were activated in the gnd mutant grown on glucose. As compared with the parent strain, the activities of phosphoglucose isomerase were increased in mutants grown on glucose but decreased in mutants grown on pyruvate. The metabolic flux redistribution obtained based on 13C-labeling experiments further indicated that the direction of the flux through the non-oxidative PPP was reversed in response to the gene knockout. Moreover, the knockout of genes caused an increased flux through the tricarboxlic acid cycle in mutants grown on glucose but caused a decrease in the case of using pyruvate. There was also a negative correlation between the fluxes through malic enzyme and isocitrate dehydrogenase in the mutants; and a positive correlation was found between the fluxes through malic enzyme and phosphoenolpyruvate carboxylase.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

13.
14.
Summary The formation of ADHII in Saccharomyces cerevisiae is regulated by carbon catabolite repression. There are two genes involved in the formation of ADHII: ADR2, the structural gene as identified by electrophoretic variants and ADR1, possibly a regulatory gene. A new genetic element involved in the regulation of ADHII was identified by three allelic mutants insensitive to strong glucose repression. They were called ADR3 c (wild type designation ADR3) and found to be tightly linked to the structural gene, ADR2. The alcohol dehydrogenase found in ADR3 c mutants could not be distinguished electrophoretically from the ADHII of the glucose-sensitive wild type, ADR3.Dominance relations between ADR3 c and ADR3 were established in diploids heterozygous for ADR3 and the two alleles of ADR2 (ADR2-S: slow ADHII, ADR2-F: fast ADHII). During growth on 10% glucose, an ADR3 c ADR2-F/ADR3 ADR2-S heterozygous diploid formed only the fast ADHII variant whereas an ADR3 c ADR2-S/ADR3 ADR2-F heterozygote produced only the slow form. This was taken as evidence of the cis-dominance of all ADR3 c alleles. The cis-effect of ADR3 c was also demonstrated in glucose-derepressed diploids. The ADR3 c mutations do not only cause glucose-insensitive ADHII formation, but also reduce the activity of the adjacent structural gene during derepression. Thus ADR3 c alleles were considered to be controlling site mutations. No pleiotropic effects were observed on the formation of enzymes related to the function of ADHII.An adr1 ADR2 ADR3 single mutant did not form ADHII. In contrast to this, an adr1 ADR2 ADR3 c double mutant formed ADHII at a similar level as an ADR1 ADR2 ADR3 c mutant. This showed that ADR3 c was epistatic over adr1 (previously suggested as a positive regulatory gene). From this it was concluded that ADR1 is in fact a positive regulatory gene the function of which is required for the expression of the structural gene for ADHII, ADR2. ADR3 is the controlling site for the structural gene ADR2. Mutations at this site, ADR3 c , alleviate the requirement for the ADR2 gene product. ADR3 c is discussed as a promotor or operator site.  相似文献   

15.
Summary Starting with yeast cells lacking the constitutive alcohol dehydrogenase activity (ADHI), mutants with partially glucose-insensitive formation of ADHII were isolated. Genetic analysis showed that four mutants (designated ADR3 c) were linked to the ADHII-structural gene, ADR2, and were cis-dominant. On derepression, two of them produced elevated ADHII-levels, indicating a promotor function of the altered controlling site. The other ADR3 c-mutant alleles affected the ADHII-subunit association in diploids carrying two electrophoretically distinct alleles of the structural gene ADR2. Twelve semidominant constitutive mutants could be attributed to gene ADR1 (ADR1 c-alleles) previously identified by recessive mutants with blocked derepression. This suggested a positive regulatory role of the ADR1 gene product on the expression of the ADHII-structural gene. A pleiotropic mutation ccr1 (Ciriacy, 1977) was epistatic over glucose-resistant ADHII-formation caused by ADR1 c-alleles. From this it was concluded that CCR1 specifies for a product co-activating the structural gene or modifying the ADR1-gene product. A further regulatory element (gene designation ADR4) not linked to the structural gene could be identified upon isolation of recessive constitutive mutants adr4 from a ccr1 ADR1 c-double mutant.  相似文献   

16.
The reversion behavior of pleiotropic carbohydrate mutants, previously designated as ctr, was studied. The mutants revert to complete restoration of the wild-type phenotype, as well as to a spectrum of partial wild-type phenotypes. Lac+ reversions were found in the lac region (11 min) and some Mal+ reversions occurred at malB (79 min), at a distance from the site of the ctr mutations (46 to 47 min). About one-third of Lac+ and Mal+ revertants were constitutive for uptake of their respective substrates, and one-third modified for inducibility. The remaining third were not distinguishable from wild type. Induction of a ctr mutation in a lac constitutive strain, either operator or repressor mutant, did not affect lactose metabolism. A polar-like ctr mutant, deficient in both enzyme I and heat-stable protein of the phosphoenolpyruvate-dependent phosphotransferase strain was also described. Partial revertants of ctr were still found to lack enzyme I.  相似文献   

17.

Background

Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P.

Results

We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1 + Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1 + Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose.

Conclusions

The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase production, but only under repressing conditions. This increase resulted partly from the deletion itself and partly from a genetic interaction with the cre1-1 mutation. The lower cellulase activity of these mutants in media with lactose could be attributed to a reduced ability to hydrolyse this sugar but not to an effect on the expression of xyr1.  相似文献   

18.
19.
We have reported previously that multiple copies of MRG19 suppress GAL genes in a wild-type but not in a gal80 strain of Saccharomyces cerevisiae. In this report we show that disruption of MRG19 leads to a decrease in GAL induction when S. cerevisiae is induced with 0.02% but not with 2.0% galactose. Disruption of MRG19 in a gal3 background (this strain shows long-term adaptation phenotype) further delays the GAL induction, supporting the notion that its function is important only under low inducing signals. As a corollary, disruption of MRG19 in a gal80 strain did not decrease the constitutive expression of GAL genes. These results suggest that MRG19 has a role in GAL regulation only when the induction signal is weak. Unlike the effect on GAL gene expression, disruption of MRG19 leads to de-repression of CYC1-driven beta-galactosidase activity. MRG19 disruptant also showed a twofold increase in the rate of oxygen uptake as compared with the wild-type strain. ADH2, CTA1, DLD1, and CYC7 promoters that are active during nonfermentative growth did not show any de-repression of beta-galactosidase activity in the MRG19 disruptant. Western blot analysis indicated that MRG19 is a glucose repressible gene and is expressed in galactose and glycerol plus lactate. Experiments using green fluorescent protein fusion constructs indicate that Mrg19p is localized in the nucleus consistent with the presence of a consensus nuclear localization signal sequence. Based on the above results, we propose that Mrg19p is a regulator of galactose and nonfermentable carbon utilization.  相似文献   

20.
N D Khaustova  S V Morgun 《Genetika》1999,35(5):600-605
Physico-chemical properties of ADH and some fitness parameters were examined in two mutant (cn and vg) and two wild-type (C-S and D) strains of Drosophila melanogaster. It was shown that, under the experimental conditions, longevity, fecundity and heat resistance did not depend on the activity and the electrophoretic mobility of enzymes. The Adh gene-enzyme system of the mutants was analyzed in relation to the saturation of their genotypes with genes of wild-type flies having different allelic control of the enzyme. ADH activity was shown to be positively correlated with the frequency of F allele of the structural gene (r = 0.84), whereas thermostability of the enzyme was not associated with electrophoretic mobility. Low thermostability of ADH in vg mutants, which was correlated with low heat resistance (r = 0.94), is assumed to be controlled by the thermostable allele Adh Fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号