首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NS5B encoded by the hepatitis C virus genome is a RNA-dependent RNA polymerase essential to viral replication. The entire NS5B protein contains a catalytic domain followed by a regulatory motif and a membrane-anchor domain at its C-terminus. Reported here is the molecular cloning and expression of the full-length NS5B polymerase (NS5B-FL) in bacterial cells as a non-fusion protein. The non-tagged NS5B-FL was purified to homogeneity using sequential chromatographic columns and its identity was confirmed using anti-NS5B peptide antibodies and amino acid sequencing. Purified NS5B-FL demonstrated RNA-dependent RNA polymerase activity and was able to replicate a HCV RNA genome fragment through both copy-back and de novo mechanisms. Its biochemical properties were further characterized in comparison with a truncated form of NS5B polymerase with a deletion of 51 residues from its C-terminus.  相似文献   

2.
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is essential for the replication of viral RNA and thus constitutes a valid target for the chemotherapeutic intervention of HCV infection. In this report, we describe the identification of 2'-substituted nucleosides as inhibitors of HCV replication. The 5'-triphosphates of 2'-C-methyladenosine and 2'-O-methylcytidine are found to inhibit NS5B-catalyzed RNA synthesis in vitro, in a manner that is competitive with substrate nucleoside triphosphate. NS5B is able to incorporate either nucleotide analog into RNA as determined with gel-based incorporation assays but is impaired in its ability to extend the incorporated analog by addition of the next nucleotide. In a subgenomic replicon cell line, 2-C-methyladenosine and 2'-O-methylcytidine inhibit HCV RNA replication. The 5'-triphosphates of both nucleosides are detected intracellularly following addition of the nucleosides to the media. However, significantly higher concentrations of 2'-C-methyladenosine triphosphate than 2'-O-methylcytidine triphosphate are detected, consistent with the greater potency of 2'-C-methyladenosine in the replicon assay, despite similar inhibition of NS5B by the triphosphates in the in vitro enzyme assays. Thus, the 2'-modifications of natural substrate nucleosides transform these molecules into potent inhibitors of HCV replication.  相似文献   

3.
Efficient replication of hepatitis C virus (HCV) subgenomic RNA in cell culture requires the introduction of adaptive mutations. In this report we describe a system which enables efficient replication of the Con1 subgenomic replicon in Huh7 cells without the introduction of adaptive mutations. The starting hypothesis was that high amounts of the NS5A hyperphosphorylated form, p58, inhibit replication and that reduction of p58 by inhibition of specific kinase(s) below a certain threshold enables HCV replication. Upon screening of a panel of kinase inhibitors, we selected three compounds which inhibited NS5A phosphorylation in vitro and the formation of NS5A p58 in cell culture. Cells, transfected with the HCV Con1 wild-type sequence, support HCV RNA replication upon addition of any of the three compounds. The effect of the kinase inhibitors was found to be synergistic with coadaptive mutations in NS3. This is the first direct demonstration that the presence of high amounts of NS5A-p58 causes inhibition of HCV RNA replication in cell culture and that this inhibition can be relieved by kinase inhibitors.  相似文献   

4.
Hepatitis C virus (HCV) infects over 170 million persons worldwide. It is the leading cause of liver disease in the U.S. and is responsible for most liver transplants. Current treatments for this infectious disease are inadequate; therefore, new therapies must be developed. Several labs have obtained evidence for a protein complex that involves many of the nonstructural (NS) proteins encoded by the virus. NS3, NS4A, NS4B, NS5A, and NS5B appear to interact structurally and functionally. In this study, we investigated the interaction between the helicase, NS3, and the RNA polymerase, NS5B. Pull-down experiments and surface plasmon resonance data indicate a direct interaction between NS3 and NS5B that is primarily mediated through the protease domain of NS3. This interaction reduces the basal ATPase activity of NS3. However, NS5B stimulates product formation in RNA unwinding experiments under conditions of excess nucleic acid substrate. When the concentrations of NS3 and NS5B are in excess of nucleic acid substrate, NS5B reduces the rate of NS3-catalyzed unwinding. Under pre-steady-state conditions, in which NS3 and substrate concentrations are similar, product formation increased in the presence of NS5B. The increase was consistent with 1:1 complex formed between the two proteins. A fluorescently labeled form of NS3 was used to investigate this interaction through fluorescence polarization binding assays. Results from this assay support interactions that include a 1:1 complex formed between NS3 and NS5B. The modulation of NS3 by NS5B suggests that these proteins may function together during replication of the HCV genome.  相似文献   

5.
Allosteric inhibition of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase enzyme has recently emerged as a viable strategy toward blocking replication of viral RNA in cell-based systems. We report here 2 series of indole-N-acetamides, bearing physicochemically diverse carboxylic acid replacements, which show potent affinity for the NS5B enzyme with reduced potential for formation of glucuronide conjugates. Preliminary optimization of these series furnished compounds that are potent in the blockade of subgenomic HCV RNA replication in HUH-7 cells.  相似文献   

6.
Hepatitis C virus (HCV) is the main agent of acute and chronic liver diseases leading to cirrhosis and hepatocellular carcinoma. The current standard therapy has limited efficacy and serious side effects. Thus, the development of alternate therapies is of tremendous importance. HCV NS5A (nonstructural 5A protein) is a pleiotropic protein with key roles in HCV replication and cellular signaling pathways. Here we demonstrate that NS5A dimerization occurs through Domain I (amino acids 1-240). This interaction is not mediated by nucleic acids because benzonase, RNase, and DNase treatments do not prevent NS5A-NS5A interactions. Importantly, DTT abrogates NS5A-NS5A interactions but does not affect NS5A-cyclophilin A interactions. Other reducing agents such as tris(2-carboxyethyl)phosphine and 2-mercaptoethanol also abrogate NS5A-NS5A interactions, implying that disulfide bridges may play a role in this interaction. Cyclophilin inhibitors, cyclosporine A, and alisporivir and NS5A inhibitor BMS-790052 do not block NS5A dimerization, suggesting that their antiviral effects do not involve the disruption of NS5A-NS5A interactions. Four cysteines, Cys-39, Cys-57, Cys-59, and Cys-80, are critical for dimerization. Interestingly, the four cysteines have been proposed to form a zinc-binding motif. Supporting this notion, NS5A dimerization is greatly facilitated by Zn(2+) but not by Mg(2+) or Mn(2+). Importantly, the four cysteines are vital not only for viral replication but also critical for NS5A binding to RNA, revealing a correlation between NS5A dimerization, RNA binding, and HCV replication. Altogether our data suggest that NS5A-NS5A dimerization and/or multimerization could represent a novel target for the development of HCV therapies.  相似文献   

7.
The virally encoded NS5B RNA-dependent RNA polymerase has emerged as a prime target in the search for specific HCV antivirals. A series of benzimidazole 5-carboxamide compounds inhibit the cellular RNA replication of a HCV subgenomic replicon and we have advanced our understanding of this class of inhibitors through a combination of complementary approaches that include biochemical cross-linking experiments with a photoreactive analogue followed by mass spectrometry analysis of the enzyme. A novel binding site has been localized for these inhibitors at the junction of the thumb domain and the N-terminal finger loop. Furthermore, the isolation and characterization of resistant replicon mutants that co-localize to this region distinguished this class of compounds from other non-nucleoside NS5B inhibitors that bind to distinct allosteric sites. Resistant mutations that emerged with the benzimidazole 5-carboxamide and related compounds were found at three amino acid positions in the thumb domain: Pro(495) with substitutions to Ser, Leu, Ala, or Thr; Pro(496) substitutions to Ser or Ala; and a V499A substitution. Mutations at each of these positions conferred different levels of resistance to this drug class: the Pro(495) changes provided the greatest shifts in compound potency, followed by moderate changes in potency with the Pro(496) substitutions, and finally only minor shifts in potency with V499A. Combinations that include the benzimidazole 5-carboxamide polymerase inhibitors and compounds that bind other sites or other HCV targets, including HCV protease inhibitors, are complementary in cell culture models of HCV RNA replication at suppressing the emergence of resistant variants. This novel class of compounds and unique binding site expand the diversity of HCV antivirals currently under development and offer the potential to improve the treatment of chronic HCV infection.  相似文献   

8.
The interaction of the hepatitis C virus (HCV) RNA-dependent RNA polymerase with RNA substrate is incompletely defined. We have characterized the activities of the HCV NS5B polymerase, modified by different deletions and affinity tags, with a routinely used homopolymeric substrate, and established apparent affinities of the various NS5B constructs both for the NTP and the template/primer substrates. We identified a uniquely tagged HCV NS5B RNA polymerase construct with a lower affinity (higher K(m)) than mature HCV NS5B for template/ primer substrate and highlighted the use of such a polymerase for the identification of inhibitors of NS5B activity, particularly inhibitors of productive RNA binding. The characterization of specific benzimidazole-5-carboxamide-based inhibitors, identified in a screening campaign, revealed that this class of compounds was non-competitive with regard to NTP incorporation and had no effect on processive elongation, but inhibited an initiation phase of the HCV polymerase activity. The potency of these compounds versus a panel of different NS5B polymerase constructs was inversely proportional to the enzymes' affinities for template/primer substrate. The benzimidazole-5-carboxamide compounds also inhibited the full-length, untagged NS5B de novo initiation reaction using HCV 3'-UTR substrate RNA and expand the diversifying pool of potential HCV replication inhibitors.  相似文献   

9.
The RNA-dependent RNA polymerase (NS5B) from hepatitis C virus (HCV) is a key enzyme in HCV replication. NS5B is a major target for the development of antiviral compounds directed against HCV. Here we present the structures of three thiophene-based non-nucleoside inhibitors (NNIs) bound non-covalently to NS5B. Each of the inhibitors binds to NS5B non-competitively to a common binding site in the "thumb" domain that is approximately 35 Angstroms from the polymerase active site located in the "palm" domain. The three compounds exhibit IC(50) values in the range of 270 nM to 307 nM and have common binding features that result in relatively large conformational changes of residues that interact directly with the inhibitors as well as for other residues adjacent to the binding site. Detailed comparisons of the unbound NS5B structure with those having the bound inhibitors present show that residues Pro495 to Arg505 (the N terminus of the "T" helix) exhibit some of the largest changes. It has been reported that Pro495, Pro496, Val499 and Arg503 are part of the guanosine triphosphate (GTP) specific allosteric binding site located in close proximity to our binding site. It has also been reported that the introduction of mutations to key residues in this region (i.e. Val499Gly) ablate in vivo sub-genomic HCV RNA replication. The details of NS5B polymerase/inhibitor binding interactions coupled with the observed induced conformational changes provide new insights into the design of novel NNIs of HCV.  相似文献   

10.
Hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells, and as a consequence is an attractive target for selective inhibition. This paper describes the discovery of a novel family of HCV NS5B non-nucleoside inhibitors inspired by the bioisosterism between sulfonamide and phosphonamide. Systematic structural optimization in this new series led to the identification of IDX375, a potent non-nucleoside inhibitor that is selective for genotypes 1a and 1b. The structure and binding domain of IDX375 were confirmed by X-ray co-crystalisation study.  相似文献   

11.
Hepatitis C virus (HCV) has infected almost 200 million people worldwide, typically causing chronic liver damage and severe complications such as liver failure. Currently, there are few approved treatments for viral infection. Thus, the HCV RNA‐dependent RNA polymerase (gene product NS5B) has emerged as an important target for small molecule therapeutics. Potential therapeutic agents include allosteric inhibitors that bind distal to the enzyme active site. While their mechanism of action is not conclusively known, it has been suggested that certain inhibitors prevent a conformational change in NS5B that is crucial for RNA replication. To gain insight into the molecular origin of long‐range allosteric inhibition of NS5B, we employed molecular dynamics simulations of the enzyme with and without an inhibitor bound to the thumb domain. These studies indicate that the presence of an inhibitor in the thumb domain alters both the structure and internal motions of NS5B. Principal components analysis identified motions that are severely attenuated by inhibitor binding. These motions may have functional relevance by facilitating interactions between NS5B and RNA template or nascent RNA duplex, with presence of the ligand leading to enzyme conformations with narrower and thus less accessible RNA binding channels. This study provides the first evidence for a mechanistic basis of allosteric inhibition in NS5B. Moreover, we present evidence that allosteric inhibition of NS5B results from intrinsic features of the enzyme free energy landscape, suggesting a common mechanism for the action of diverse allosteric ligands. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC(50) of approximately 0.5 microm, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.  相似文献   

13.
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.  相似文献   

14.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.  相似文献   

15.
Sun HY  Ou NY  Wang SW  Liu WC  Cheng TF  Shr SJ  Sun KT  Chang TT  Young KC 《PloS one》2011,6(9):e25530
Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV) sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd) nucleotide of the 5'UTR with the 14(th), 41(st), 76(th), 110(th), 211(th) and 212(th) residues of NS2 and with the 71(st), 175(th) and 621(st) residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR??? and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR??? depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR???-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR??? co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.  相似文献   

16.
The hepatitis C virus (HCV) represents a substantial threat to human health worldwide. The virus expresses a dual-function protein, NS3 having both protease and RNA helicase activities that are essential for productive viral replication and sustained infections. While viral protease and polymerase inhibitors have shown great successes in treating chronic HCV infections, drugs that specifically target the helicase activity have not advanced. A robust and quantitative 96-well plate-based fluorescent DNA unwinding assay was used to screen a class of indole thio-barbituric acid (ITBA) analogs using the full-length, recombinant HCV NS3, and identified three naphthoyl-containing analogs that efficiently inhibited NS3 helicase activity in a dose-dependent manner, with observed IC50 values of 21–24?µM. Standard gel electrophoresis helicase assays using radiolabeled duplex DNA and RNA NS3 substrates confirmed the inhibition of NS3 unwinding activity. Subsequent anisotropy measurements demonstrated that the candidate compounds did not disrupt NS3 binding to nucleic acids. Additionally, the rate of ATP hydrolysis and the protease activity were also not affected by the inhibitors. Thus, these results indicate that the three ITBA analogs containing N-naphthoyl moieties are the foundation of a potential series of small molecules capable of inhibiting NS3 activity via a novel interaction with the helicase domain that prevents the productive unwinding of nucleic acid substrates, and may represent the basis for a new class of therapeutic agents with the potential to aid in the treatment and eradication of hepatitis C virus.  相似文献   

17.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

18.
Gao L  Aizaki H  He JW  Lai MM 《Journal of virology》2004,78(7):3480-3488
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.  相似文献   

19.
Cai Z  Yi M  Zhang C  Luo G 《Journal of virology》2005,79(18):11607-11617
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is the virus-encoded RNA-dependent RNA polymerase (RdRp) essential for HCV RNA replication. An earlier crystallographic study identified a rGTP-specific binding site lying at the surface between the thumb domain and the fingertip about 30 A away from the active site of the HCV RdRp (S. Bressanelli, L. Tomei, F. A. Rey, and R. De Francesco, J. Virol 76:3482-3492, 2002). To determine its physiological importance, we performed a systematic mutagenesis analysis of the rGTP-specific binding pocket by amino acid substitutions. Effects of mutations of the rGTP-specific binding site on enzymatic activity were determined by an in vitro RdRp assay, while effects of mutations on HCV RNA replication were examined by cell colony formation, as well as by transient replication of subgenomic HCV RNAs. Results derived from these studies demonstrate that amino acid substitutions of the rGTP-specific binding pocket did not significantly affect the in vitro RdRp activity of purified recombinant NS5B proteins, as measured by their abilities to synthesize RNA on an RNA template containing the 3' untranslated region of HCV negative-strand RNA. However, most mutations of the rGTP-specific binding site either impaired or completely ablated the ability of subgenomic HCV RNAs to induce cell colony formation. Likewise, these mutations caused either reduction in or lethality to transient replication of the human immunodeficiency virus Tat-expressing HCV replicon RNAs in the cell. Collectively, these findings demonstrate that the rGTP-specific binding site of the HCV NS5B is not required for in vitro RdRp activity but is important for HCV RNA replication in vivo.  相似文献   

20.
The hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase required for replication of the HCV RNA genome. We have identified a peptide that most closely resembles a short region of the protein kinase C-related kinase 2 (PRK2) by screening of a random 12-mer peptide library displayed on the surface of the M13 bacteriophage with NS5B proteins immobilized on microwell plates. Competitive phage enzyme-linked immunosorbent assay with a synthetic peptide showed that the phage clone displaying this peptide could bind HCV RNA polymerase with a high affinity. Coimmunoprecipitation and colocalization studies demonstrated in vivo interaction of NS5B with PRK2. In vitro kinase assays demonstrated that PRK2 specifically phosphorylates NS5B by interaction with the N-terminal finger domain of NS5B (amino acids 1-187). Consistent with the in vitro NS5B-phosphorylating activity of PRK2, we detected the phosphorylated form of NS5B by metabolic cell labeling. Furthermore, HCV NS5B immunoprecipitated from HCV subgenomic replicon cells was specifically recognized by an antiphosphoserine antibody. Knock-down of the endogenous PRK2 expression using a PRK2-specific small interfering RNA inhibited HCV RNA replication. In contrast, PRK2 overexpression, which was accompanied by an increase of in the level of its active form, dramatically enhanced HCV RNA replication. Altogether, our results indicate that HCV RNA replication is regulated by NS5B phosphorylation by PRK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号