首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thioredoxin (Trx1), a very important protein for regulating intracellular redox reactions, was immobilized on iron oxide superparamagnetic nanoparticles previously coated with 3-aminopropyltriethoxysilane (APTS) via covalent coupling using the EDC (1-ethyl-3-{3-dimethylaminopropyl}carbodiimide) method. The system was extensively characterized by atomic force microscopy, vibrational and magnetic techniques. In addition, gold nanoparticles were also employed to probe the exposed groups in the immobilized enzyme based on the SERS (surface enhanced Raman scattering) effect, confirming the accessibility of the cysteines residues at the catalytic site. For the single coated superparamagnetic nanoparticle, by monitoring the enzyme activity with the Ellman reagent, DTNB = 5,5′-dithio-bis(2-15 nitrobenzoic acid), an inhibitory effect was observed after the first catalytic cycle. The inhibiting effect disappeared after the application of an additional silicate coating before the APTS treatment, reflecting a possible influence of unprotected iron-oxide sites in the redox kinetics. In contrast, the doubly coated system exhibited a normal in-vitro kinetic activity, allowing a good enzyme recovery and recyclability.  相似文献   

2.
Complementary imaging modalities provide more information than either method alone can yield and we have developed a dual-mode imaging probe for combined magnetic resonance (MR) and positron emission tomography (PET) imaging. We have developed dual-mode PET/MRI active probes targeted to vascular inflammation and present synthesis of (1) an aliphatic amine polystyrene bead and (2) a novel superparamagnetic iron oxide nanoparticle targeted to macrophages that were both coupled to positron-emitting copper-64 isotopes. The amine groups of the polystyrene beads were directly conjugated with an amine-reactive form (isothiocyanate) of aza-macrocycle 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA). Iron oxide nanoparticles are dextran sulfate coated, and the surface was modified to contain aldehyde groups to conjugate to an amine-activated DOTA. Incorporation of chelated Cu-64 to nanoparticles under these conditions, which is routinely used to couple DOTA to macromolecules, was unexpectedly difficult and illustrates that traditional conjugation methods do not always work in a nanoparticle environment. Therefore, we developed new methods to couple Cu-64 to nanoparticles and demonstrate successful labeling to a range of nanoparticle types. We obtained labeling yields of 24% for the amine polystyrene beads and 21% radiolabeling yield for the anionic dextran sulfate iron oxide nanoparticles. The new coupling chemistry can be generalized for attaching chelated metals to other nanoparticle platforms.  相似文献   

3.
Superparamagnetic iron oxide (SPIO) and ultra small superparamagnetic iron oxide (USPIO) nanoparticles have been developed as magnetic resonance imaging (MRI) contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is ~ 30nm or less, present R1 and R2 relaxivities which are much higher than those of conventional paramagnetic gadolinium chelates. Generally, these magnetic particles are coated with biocompatible polymers that prevent the agglomeration of the colloidal suspension and improve their blood distribution profile. In spite of their potential as MRI blood contrast agents, the biomedical application of iron oxide nanoparticles is still limited because of their intravascular half-life of only few hours; such nanoparticles are rapidly cleared from the bloodstream by macrophages of the reticulo-endothelial system (RES). To increase the life span of these MRI contrast agents in the bloodstream we proposed the encapsulation of SPIO nanoparticles in red blood cells (RBCs) through the transient opening of cell membrane pores. We have recently reported results obtained by applying our loading procedure to several SPIO nanoparticles with different chemical physical characteristics such as size and coating agent. In the current investigation we showed that the life span of iron-based contrast agents in the mice bloodstream was prolonged to 12 days after the intravenous injection of murine SPIO-loaded RBCs. Furthermore, we developed an animal model that implicates the pretreatment of animals with clodronate to induce a transient suppression of tissue macrophages, followed by the injection of human SPIO-loaded RBCs which make it possible to encapsulate nanoparticle concentrations (5.3-16.7mM Fe) higher than murine SPIO-loaded RBCs (1.4-3.55mM Fe). The data showed that, when human RBCs are used as more capable SPIO nanoparticle containers combined with a depletion of tissue macrophages, Fe concentration in animal blood is 2-3 times higher than iron concentration obtained by the use of murine SPIO-loaded RBCs.  相似文献   

4.
Gene therapy, including small interfering RNA (siRNA) technology, is one of the leading strategies that help to improve the outcomes of the current therapeutic systems against HIV-1 infection. The successful therapeutic application of siRNAs requires their safe and efficient delivery to specific cells. Here, we introduce a superparamagnetic iron oxide nanoparticle (SPION) for delivering siRNA against HIV-1 nef (anti-nef siRNA) into two cell lines, HEK293 and macrophage RAW 264.7. SPIONs were coated with trimethyl chitosan (TMC), and thereafter, different concentrations of SPION–TMC were coated with different ratios of a carboxymethyl dextran (CMD) to modify the physicochemical properties and improve the biological properties of the nanocarriers. The nanoparticles exhibited a spherical shape with an average size of 112 nm. The obtained results showed that the designed delivery route enhanced the uptake of siRNA into both HEK293 and RAW 264.7 cells compared with control groups. Moreover, CMD–TMC–SPIONs containing anti-nef siRNA significantly reduced the expression of HIV-1 nef in HEK293 stable cells. The modified siRNA-loaded SPIONs also displayed no toxicity or apoptosis-inducing effects on the cells. The CMD–TMC–SPIONs are suggested as potential nanocarriers for siRNA delivery in gene therapy of HIV-1 infection.  相似文献   

5.
The main aim of this study was to synthesize the superparamagnetic nanoparticles coated by alginate/chitosan/β-cyclodextrin to purify α-amylase. Isolated bacteria were identified by morphological, biochemical and taxonomic molecular studies. FTIR- spectrometer, VSM, X-ray instruments and Malvern Zetasizer were used to characterize nanoparticles characteristics. The morphological structures and the elemental composition of the nanoparticles were studied by using FESEM and EDS, respectively. The molecular weight of enzyme was determined using SDS-PAGE, and the enzyme activity detected by zymographic analysis. FTIR studies showed the presence of Fe–O–Fe in the Fe3O4 and verified the interaction between chitosan, β-cyclodextrin and alginate. The saturation magnetization for superparamagnetic and coated superparamagnetic nanoparticles was indicated 39 and 1.9?emu?g?1, respectively. The maximum intensity of the XRD peak indicated the presence of the Fe3O4. FESEM and EDS analysis showed that the nanoparticles were regular and spherical in shape and corresponded to the Fe and O elements. Enzyme purification by synthesized nanoparticles was achieved 13.84?U?mg?1; purification fold of 3.50. The molecular weight of α-amylase was about 22?kDa. The highest activity of α-amylase was observed at 70?°C, pH 9.3 and Ca2+-independent. As a conclusion, the coated superparamagnetic nanoparticles showed more applications in enzyme purification comparing to the conventional methods.  相似文献   

6.
Prion diseases are associated with the presence of PrP(Sc), a disease-associated misfolded conformer of the prion protein. We report that superparamagnetic nanoparticles bind PrP(Sc) molecules efficiently and specifically, permitting magnetic separation of prions from a sample mixture. Captured PrP(Sc) molecules retain the activity to seed protein misfolding cyclic amplification (PMCA) reactions, enabling the rapid concentration of dilute prions to improve detection. Furthermore, superparamagnetic nanoparticles clear contaminated solutions of PrP(Sc). Our findings suggest that coupling magnetic nanoparticle capture with PMCA could accelerate and improve prion detection. Magnetic nanoparticles may also be useful for developing a nontoxic prion decontamination method for biologically derived products.  相似文献   

7.
New folate-conjugated superparamagnetic maghemite nanoparticles have been synthesized for the intracellular hyperthermia treatment of solid tumors. These ultradispersed nanosystems have been characterized for their physicochemical properties and tumor cell targeting ability, facilitated by surface modification with folic acid. Preliminary experiments of nanoparticles heating under the influence of an alternating magnetic field at 108 kHz have been also performed. The nanoparticle size, surface charge, and colloidal stability have been assessed in various conditions of ionic strength and pH. The ability of these folate "decorated" maghemite nanoparticles to recognize the folate receptor has been investigated both by surface plasmon resonance and in folate receptor expressing cell lines, using radiolabeled folic acid in competitive binding experiments. The specificity of nanoparticle cellular uptake has been further investigated by transmission electron microscopy after incubation of these nanoparticles in the presence of three cell lines with differing folate receptor expression levels. Qualitative and quantitative determinations of both folate nanoparticles and nontargeted control nanoparticles demonstrated a specific cell internalization of the folate superparamagnetic nanoparticles.  相似文献   

8.
There are many liver diseases that could be treated with delivery of therapeutics such as DNA, proteins, or small molecules. Nanoparticles are often proposed as delivery vectors for such therapeutics; however, achieving nanoparticle accumulations in the therapeutically relevant hepatocytes is challenging. In order to address this issue, we have synthesized polymer coated, fluorescent iron oxide nanoparticles that bind and deliver DNA, as well as produce contrast for magnetic resonance imaging (MRI), fluorescence imaging, and transmission electron microscopy (TEM). The composition of the coating can be varied in a facile manner to increase the quantity of poly(ethylene glycol) (PEG) from 0% to 5%, 10%, or 25%, with the aim of reducing opsonization but maintaining DNA binding. We investigated the effect of the nanoparticle coating on DNA binding, cell uptake, cell transfection, and opsonization in vitro. Furthermore, we exploited MRI, fluorescence imaging, and TEM to investigate the distribution of the different formulations in the liver of mice. While MRI and fluorescence imaging showed that each formulation was heavily taken up in the liver at 24 h, the 10% PEG formulation was taken up by the therapeutically relevant hepatocytes more extensively than either the 0% PEG or the 5% PEG, indicating its potential for delivery of therapeutics to the liver.  相似文献   

9.
Ferritin, the iron cage protein, contains a superparamagnetic ferrihydrite nanoparticle formed from the oxidation and absorption of Fe2+ ions. This nanoparticle increases its internal energy when exposed to alternating magnetic fields due to magnetization lag. The energy is then dissipated to the surrounding proteic cage, affecting its functioning. In this article we show that the rates of iron chelation with ferrozine, an optical marker, are reduced by up to a factor of 3 in proteins previously exposed to radio frequency magnetic fields of 1 MHz and 30 µT for several hours. The effect is non‐thermal and depends on the frequency‐amplitude product of the magnetic field. Bioelectromagnetics 30:336–342, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.  相似文献   

11.
The functionalization of nanoparticles is conditio sine qua non in studies of specific interaction with a biological target. Often, their biological functionality is achieved by covalent binding of bioactive molecules on a preexisting single surface coating. The yield and quality of the resulting coated and functionalized superparamagnetic iron oxide nanoparticles (SPIONs) can be significantly improved and reaction times reduced by using solid-phase synthesis strategies. In this study, a fixed bed reactor with a quadrupole repulsive arrangement of permanent magnets was assayed for SPION surface derivatization. The magnet array around the fixed bed reactor creates very high magnetic field gradients that enables the immobilization of SPIONs with a diameter as low as 9 nm. The functionalization on the surface of immobilized 25 nm 3-(aminopropyl)trimethoxysilane-coated SPIONs (APS-SPIONs) was performed using fluorescein-isothiocyanate directly, and by the SV40 large T-antigen nuclear localization signal peptide (PKKKRKVGC) conjugated to acryloylpoly(ethylene glycol)-N-hydroxysuccinimide, where the PEG reagent is conjugated first to create a functionalized nanoparticle and the peptide is added to the acryloyl group. We show that the yield of reactant grafted on the surface of the APS-coated SPIONs was higher in solid-phase within the fixed bed reactor compared to conventional liquid-phase chemistry. In summary, the functionalization of SPIONs using a magnetically fixed bed reactor was superior to the liquid-phase reaction in terms of the yield, reaction times required for derivatization, size distribution, and scalability.  相似文献   

12.
Magnetic nanoparticles can be used for numerous in vitro and in vivo applications. However, since uptake by the reticuloendothelial system represents an obstacle for the achievement of nanoparticle diagnostic and therapeutic goals, the aim of the present study was to evaluate the uptake of dimercaptosuccinic acid coated magnetic nanoparticles by reticuloendothelial system phagocytic cells present in lymph nodes, spleen, and liver tissue and how the presence of these particles could have an impact on the morphology of these organs in capuchin monkeys (Sapajus spp.). Animals were intravenously injected with dimercaptosuccinic acid coated magnetic nanoparticles and euthanized 12 hours and 90 days post-injection. Organs were processed by transmission electron microscopy and histological techniques. Samples of spleen and lymph nodes showed no morphological changes. Nevertheless, liver samples collected 90 days post-administration showed slight morphological alteration in space of Disse. Moreover, morphometrical analysis of hepatic mitochondria was performed, suggesting a clear positive correlation between mitochondrial area and dimercaptosuccinic acid coated magnetic nanoparticles administration time. The present results are directly relevant to current safety considerations in clinical diagnostic and therapeutic uses of magnetic nanoparticles.  相似文献   

13.
Glucans are reported to elicit immune responses through activation of macrophages by a specific interaction of β-glucan with an immune cell-specific (1,3)-β-d-glucan receptor or Dectin-1 receptor. In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were coated with β-glucan in order to target the immune cells residing in the metastatic liver as an aid for discriminating metastasized tumor regions from normal hepatic parenchymal tissue. The morphology of prepared β-glucan-coated SPIONs (Glu-SPIONs) was characterized with dynamic light scattering (DLS) and transmission electron microscopy (TEM). The cytotoxicity of Glu-SPIONs was analyzed and compared to that of dextran- and PVA-coated SPIONs. The uptake of Glu-SPIONs by peritoneal macrophages was also confirmed with Prussian blue staining and MRI phantom tube imaging. The in vivo uptake of Glu-SPIONs in liver and lymph nodes in a metastatic mouse liver model was tracked by MR imaging after the systemic injection. The Glu-SPIONs predominantly accumulated in the macrophages surrounding the metastatic regions of the liver thereby indicating the distribution of tumor cells in the liver. MR imaging of the Glu-SPIONs clearly revealed macro- or micro-metastasized tumor regions throughout the liver, due to the preferential uptake of Glu-SPIONs into macrophages, not tumor cells. The Glu-SPION-accumulating regions were further confirmed with H&E and Prussian blue stainings after tissue sectioning. Based on our study, we propose that Glu-SPIONs can be successfully applied for diagnosing hepatic metastasis.  相似文献   

14.
The clathrin-associated protein complexes are heterotetrameric structures believed to interact with clathrin and with membrane components of mammalian coated pits and coated vesicles. I have identified a yeast homolog of the mammalian beta-type large chains, suggesting the existence in yeast cells of clathrin-associated protein complexes. A sequence comparison between the putative yeast beta-type chain and its mammalian counterparts shows that their amino-terminal domains are related over their entire length and that their carboxyl-terminal domains diverge completely. This observation is consistent with our earlier proposal (T. Kurchhausen et al., Proc. Natl. Acad. Sci. USA 86:2612-2616, 1989) for the bifunctional-domain organization of the large chains, in which the invariant amino-terminal region interacts with conserved proteins of the coat while the variable carboxyl-terminal domain interacts with different membrane components of coated pits and coated vesicles.  相似文献   

15.
We have purified coated vesicles from rat liver by differential ultracentrifugation. Electron micrographs of these preparations reveal only the polyhedral structures typical of coated vesicles. SDS PAGE of the coated vesicle preparation followed by Coomassie Blue staining of proteins reveals a protein composition also typical of coated vesicles. We determined that these rat liver coated vesicles possess a latent insulin binding capability. That is, little if any specific binding of 125I-insulin to coated vesicles is observed in the absence of detergent. However, coated vesicles treated with the detergent octyl glucoside exhibit a substantial specific 125I-insulin binding capacity. We visualized the insulin binding structure of coated vesicles by cross-linking 125I-insulin to detergent-solubilized coated vesicles using the bifunctional reagent disuccinimidyl suberate followed by electrophoresis and autoradiography. The receptor structure thus identified is identical to that of the high-affinity insulin receptor present in a variety of tissues. We isolated liver coated vesicles from rats which had received injections of 125I-insulin in the hepatic portal vein. We found that insulin administered in this fashion was rapidly and specifically taken up by liver coated vesicles. Taken together, these data are compatible with a functional role for coated vesicles in the receptor-mediated endocytosis of insulin.  相似文献   

16.
The marine alginate lyase from Streptomyces sp. ALG-5, which specifically degrades poly-G block of alginate, was functionally expressed as a His-tagged form with an Escherichia coli expression system. The recombinant alginate lyase expressed with pColdI at 15 °C exhibited the highest alginate-degrading activity. The recombinant alginate lyase was efficiently immobilized onto two types of magnetic nanoparticles, superparamagnetic iron oxide nanoparticle, and hybrid magnetic silica nanoparticle, based on the affinity between His-tag and Ni2+ that displayed on the surfaces of nanoparticles. An alginate oligosaccharide mixture consisting of dimer and trimer was prepared by the immobilized alginate lyase. The immobilized enzymes were re-used repeatedly more than 10 times after magnetic separation.  相似文献   

17.
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (delta(s)) was 8.39 emu.g(-1). The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability.  相似文献   

18.
Silver nanoparticles can be coated on common polyurethane (PU) foams by overnight exposure of the foams to nanoparticle solutions. Repeated washing and air-drying yields uniformly coated PU foam, which can be used as a drinking water filter where bacterial contamination of the surface water is a health risk. Nanoparticles are stable on the foam and are not washed away by water. Morphology of the foam was retained after coating. The nanoparticle binding is due to its interaction with the nitrogen atom of the PU. Online tests were conducted with a prototypical water filter. At a flow rate of 0.5 L/min, in which contact time was of the order of a second, the output count of Escherichia coli was nil when the input water had a bacterial load of 10(5) colony-forming units (CFU) per mL. Combined with the low cost and effectiveness in its applications, the technology may have large implications to developing countries.  相似文献   

19.
Nanoemulsions are increasingly being investigated for their fascinating capability of loading both hydrophobic and hydrophilic molecules while their stability is still an issue, being affected by various factors. In this study, to evaluate the dominant factors affecting the stability of nanoemulsions, artificial neural networks (ANNs) were implemented. Nanoemulsions of almond oil in water containing oleic acid-coated superparamagnetic iron oxide nanoparticles were prepared using a mixture of Tween 80 and Span 80 as surfactant system and ethanol as a co-surfactant. The ratio of transparency of the samples at 30 min and 7 days after preparation was taken as an indication of the stability of samples. Four independent variables, namely, concentration of nanoparticle, surfactant, oil, and alcohol were investigated to find their relations with the dependent variable (i.e., transparency ratio). Using ANNs modeling, it was concluded that the stability is affected by all variables, with all variables showing reverse effect on the stability beyond an optimum amount.Key words: artificial neural networks, nanoemulsion, optimization, stability, superparamagnetic iron oxide  相似文献   

20.
The role of human dynamin in receptor-mediated endocytosis was investigated by transient expression of GTP-binding domain mutants in mammalian cells. Using assays which detect intermediates in coated vesicle formation, the dynamin mutants were found to block endocytosis at a stage after the initiation of coat assembly and preceding the sequestration of ligands into deeply invaginated coated pits. Membrane transport from the ER to the Golgi complex was unaffected indicating that dynamin mutants specifically block early events in endocytosis. These results demonstrate that mutations in the GTP-binding domain of dynamin block Tfn-endocytosis in mammalian cells and suggest that a functional dynamin GTPase is required for receptor-mediated endocytosis via clathrin-coated pits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号