首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two forms of cytochrome P-450 (P-450), designated P-450MP-1 and P-450MP-2, were purified to electrophoretic homogeneity from human liver microsomes on the basis of mephenytoin 4-hydroxylase activity. Purified P-450MP-1 and P-450MP-2 contained 12-17 nmol of P-450/mg of protein and had apparent monomeric molecular weights of 48,000 and 50,000, respectively. P-450MP-1 and P-450MP-2 were found to be very similar proteins as judged by chromatographic behavior on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE- and CM-cellulose columns, spectral properties, amino acid composition, peptide mapping, double immunodiffusion analysis, immunoinhibition, and N-terminal amino acid sequences. In vitro translation of liver RNA yielded polypeptides migrating with P-450MP-1 or P-450MP-2, depending upon which form was in each sample, indicating that the two P-450s are translated from different mRNAs. When reconsituted with NADPH-cytochrome-P-450 reductase and L-alpha-dilauroyl-sn-glyceryo-3-phosphocholine, P-450MP-1 and P-450MP-2 gave apparently higher turnover numbers for mephenytoin 4-hydroxylation than did the P-450 in the microsomes. The addition of purified rat or human cytochrome b5 to the reconstituted system caused a significant increase in the hydroxylation activity; the maximum stimulation was obtained when the molar ratio of cytochrome b5 to P-450 was 3-fold. Rabbit anti-human cytochrome b5 inhibited NADH-cytochrome-c reductase and S-mephenytoin 4-hydroxylase activities in human liver microsomes. In the presence of cytochrome b5, the Km value for S-mephenytoin was 1.25 mM with all five purified cytochrome P-450s preparations, and Vmax values were 0.8-1.25 nmol of 4-hydroxy product formed per min/nmol of P-450. P-450MP is a relatively selective P-450 form that metabolizes substituted hydantoins well. Reactions catalyzed by purified P-450MP-1 and P-450MP-2 preparations and inhibited by anti-P-450MP in human liver microsomes include S-mephenytoin 4-hydroxylation, S-nirvanol 4-hydroxylation, S-mephenytoin N-demethylation, and diphenylhydantoin 4-hydroxylation. Thus, at least two very similar forms of human P-450 are involved in S-mephenytoin 4-hydroxylation, an activity which shows genetic polymorphism.  相似文献   

2.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

3.
Liver and kidney microsomes were isolated from rats raised on high-fat diets. In terms of energy, the high-fat diets contained 4% vegetable and 40% fish, vegetable or coconut oils. Each microsomal preparation was fortified with 1 mM NADPH and incubated with 5,8,11,14,17-eicosapentaenoic acid (20:5(n-3]. The number of metabolites formed was assessed by reverse-phase high-performance liquid chromatography (HPLC). To identify the major metabolites, large-scale incubations were done with 20:5(n-3) and microsomes from phenobarbital-treated rats. After extracts from the phenobarbital and dietary studies were combined, individual products were isolated by reverse- and normal-phase HPLC. The metabolites were identified by mass spectrometry, by chromatographic properties, and by comparing their retention times and mass spectra with those of chemically synthesized standards. For liver microsomes, the major metabolites were: 17,18-, 14,15-, 11,12- and 8,9-dihydroxyeicosatetraenoic acids, 20-hydroxyeicosapentaenoic acid, and 19-hydroxyeicosatetraenoic acid. For renal microsomes, the major metabolites were 20-hydroxyeicosapentaenoic and 19-hydroxypentaenoic acids. Because formation of these metabolites required NADPH and was enhanced by phenobarbital pretreatment, 20:5(n-3) appears to be oxidized by cytochrome P-450 monooxygenases. Based on reverse-phase high performance liquid chromatograms, all three high-fat diets may produce the same types of monooxygenase metabolites from 20:5(n-3). It remains unknown whether fish-oil diets induce the synthesis of monooxygenases to oxidize n-3 fatty acids, because these preliminary studies involved only two animals per dietary group.  相似文献   

4.
A genetic polymorphism causing deficient metabolism of the anticonvulsant drug mephenytoin occurs in 5% of the Caucasian and 23% of the Japanese population. By monitoring the activities of the two major oxidative pathways of mephenytoin metabolism in the column eluates, we have purified from human livers a cytochrome P-450 isozyme, P-450 meph, which exclusively and stereoselectively catalyzes the 4-hydroxylation of (S)-mephenytoin, the major pathway affected by the polymorphism, whereas P-450 meph was virtually devoid of catalytic activity for N-demethylation of mephenytoin, the pathway remaining unaffected by the genetic deficiency. P-450 meph had an apparent Mr of 55 000 and a lambda max in the reduced CO-binding spectrum of 450 nm. Polyclonal rabbit antibodies against purified human P-450 meph almost completely inhibited the 4-hydroxylation of mephenytoin but had little effect on N-demethylation in human liver microsomes. In microsomes of liver biopsies of two subjects characterized in vivo as 'poor metabolizers' of mephenytoin, immunocrossreactive and immunoinhibitable material was observed with similar or identical properties to those of P-450 meph. There was no difference in the extent of the immunochemical reaction between microsomes of in vivo phenotyped poor metabolizers and extensive metabolizers of mephenytoin. These data suggest that P-450 meph is the target of the genetic deficiency and support the concept that a functionally altered variant form of P-450 meph causes this polymorphism.  相似文献   

5.
X L Lu  S K Yang 《Chirality》1990,2(1):1-9
Metabolism of halazepam [7-chloro-1,3-dihydro-5-phenyl-1-(2,2,2-trifluoroethyl)-2H-1,4-benzod iazepin- 2-one, HZ] was studied by incubation with liver microsomes prepared from untreated, phenobarbital (PB)-treated, and 3-methylcholanthrene (3MC)-treated male Sprague-Dawley rats. Metabolites of HZ were separated by normal-phase HPLC. Relative rates of HZ metabolism by liver microsomes prepared from untreated and treated rats were PB-treated much greater than untreated greater than 3MC-treated at low concentration of microsomal enzymes (0.25 mg protein per ml of incubation mixture) and PB-treated much greater than 3MC-treated approximately untreated at high concentration of microsomal enzymes (2 mg protein per ml of incubation mixture). The relative amounts of major metabolites were found to be 3-hydroxy-HZ (3-OH-HZ) greater than N-desalkylhalazepam (NDZ, also known as N-desmethyldiazepam and nordiazepam) much greater than oxazepam (OX) for all three rat liver microsomal preparations and the distribution of metabolites was independent of microsomal enzyme concentrations. Enantiomers of 3-OH-HZ were resolved by HPLC on a Chiralcel OC column (cellulose trisphenylcarbamate coated on silica gel, particle size 10 microns). 3-OH-HZ enantiomeres have racemization half-lives of approximately 150 min in pH 4, 7.5, and 10 aqueous solutions. 3-OH-HZ formed in the metabolism of HZ by liver microsomes prepared from untreated and treated rats were found to have 3R/3S enantiomer ratios of 37/63 (untreated), 55/45 (PB-treated), and 36/64 (3MC-treated), respectively. N-dealkylation of 3-OH-HZ by liver microsomes from PB-treated rats was substrate enantioselective; the 3R-enantiomer was N-dealkylated faster than 3S-enantiomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ring hydroxylation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea was shown to occur in the presence of liver microsomes prepared from both normal and phenobarbital induced rats. The metabolite was identified by mass spectrometry after selective extraction and purification by liquid chromatography. The microsomal catalyzed reaction was oxygen and NADPH dependent, inhibited by carbon monoxide and induced 4–5 fold by in vivo phenobarbital pre-treatment. Phenobarbital induced microsomes hydroxylated the substrate at a rate of 17.6 nmoles/min/mg protein at 37°. A Type I difference spectrum was observed with phenobarbital induced microsomes that also displayed a substrate binding constant (Ks of 4 × 10?5 M.  相似文献   

7.
On incubation of [14C]-hexachlorobenzene with microsomes from livers of rats induced with hexachlorobenzene, the major product (80-90%) was pentachlorophenol. The only other detectable metabolite, tetrachlorohydroquinone (4-15%), was presumably formed from pentachlorophenol. A considerable amount of radioactivity (5-10% of the amount of extracted metabolites) was covalently bound to protein. Microsomes derived from male hexachlorobenzene--induced rats gave by far the highest conversion (approx. 1% of substrate). Microsomes from female hexachlorobenzene--induced rats were 3 times less efficient. Microsomes from untreated and 3-methyl-cholanthrene--treated animals gave less than 5% of the amount of pentachlorophenol formed by microsomes from hexachlorobenzene--induced male rats, while phenobarbital and aroclor 1254-induction resulted in formation of 51% and 34% respectively.  相似文献   

8.
The metabolism of [6,7-3H]ethinylestradiol [( 3H]EE2) by rat liver microsomes was studied in vitro. After incubation of [3H]EE2 with rat liver microsomes for 20 min, 90% of the substrate was metabolised and 18% of the 3H-labelled material irreversibly bound to microsomal protein. Ascorbic acid (1 mM) decreased irreversible binding of 3H and produced an accumulation of 2-hydroxyethinylestradiol (2OH-EE2), while mixed-function oxidase inhibitors (0.5 mM) decreased binding of 3H to protein by inhibiting EE2 2-hydroxylation. Addition of thiols gave water-soluble metabolites which were characterised as 1(4)-thioether derivatives of 2OH-EE2 by co-chromatography with synthetic products. The results are consistent with the hypothesis that the chemically reactive metabolite of EE2 formed in vitro is either a quinone or o-semiquinone derived from 2OH-EE2 [1].  相似文献   

9.
Liu DY  Gorrod JW 《Life sciences》2000,66(1):77-88
N1-Oxidation is a major metabolic pathway for 9-benzyladenine (BA) catalyzed by the cytochrome P450 system in animal hepatic microsomes. After normal hamster hepatic microsomes or phenobarbital induced rabbit hepatic microsomes were preincubated in the presence of cyclic AMP-dependent protein kinase catalytic subunit (PKA), MgCl2 and ATP, BA-N1-oxidation was significantly decreased. However, further investigation indicated that the decrease of BA-N1-oxidation seemed to be a combination of the effects of PKA and ATP, as ATP alone showed a biphasic regulatory effect on BA-N1-oxidation when microsomes were preincubated in the presence of various concentrations of ATP. In the lower ATP concentration range (0.5-2.5mM), BA-N1-oxidation increased along with the increase of ATP concentration; whereas BA-N1-oxidation decreased when the ATP concentration was higher (>5mM). The biphasic regulatory effects of ATP on BA-N1-oxidation seem dependent on the incubation process, as preincubation markedly strengthened the effects. When microsomes were incubated at 37 degrees C for different time lengths in the absence or presence of ATP (2.5 or 20mM), the activity of BA-N1-oxidase decreased at similar rates in all groups, but the activity levels of BA-N1-oxidase were different among the groups. The cytochrome P450 content was not changed parallel to the variation of BA-N1-oxidation when microsomes were incubated in the presence of ATP, indicating that the effects of ATP on BA-N1-oxidation were not mediated by affecting CYP stability. In addition, the activity of NADPH-cytochrome P450 reductase was not markedly affected by ATP without incubation. The result implied that ATP did not inhibit the reductase directly. After microsomes were incubated in the presence of low ATP concentration (2.5mM), the reductase was slightly inhibited, whilst high ATP concentration (20mM) showed marked inhibition (83% of control). This may partially contribute to the down-regulatory effect of ATP on BA-N1-oxidation. Furthermore, it was found that the presence of magnesium ions during preincubation weakened the up-regulatory effect of ATP (2.5mM) on BA-N1-oxidation, but showed no effect on the down-regulatory effect of ATP (20mM). Since these observed phenomena are not readily explained, a possible mechanism, i.e. phosphorylation and dephosphorylation of cytochrome P450, is suggested.  相似文献   

10.
The human liver cytochrome P-450 (P-450) proteins responsible for catalyzing the oxidation of mephenytoin, tolbutamide, and hexobarbital are encoded by a multigene family (CYP2C). Although several cDNA clones and proteins related to this "P-450MP" family have been isolated, assignment of specific catalytic activities remains uncertain. Sulfaphenazole was found to inhibit tolbutamide hydroxylation to a greater extent than mephenytoin or hexobarbital hydroxylation. The inhibition by sulfaphenazole was competitive for tolbutamide and hexobarbital hydroxylation but with much different Ki values (5 vs 480 microM, respectively). Inhibition of mephenytoin hydroxylase was not competitive. The results suggest that different P-450 proteins in the P450MP family may be involved in the metabolism of these compounds. A cDNA clone (MP-8) related to the P-450MP family, isolated from a bacteriophage lambda gt11 human liver library, was expressed in Saccharomyces cerevisiae by using the pAAH5 expression vector. Yeast transformed with pAAH5 containing the MP-8 sequence (pAAH5/MP-8) showed a ferrous-CO spectrum typical of the P-450 proteins. Immunoblotting with anti-P450MP revealed that pAAH5/MP-8 microsomes contained a protein with an Mr similar to that of P-450MP-1 (approximately 48,000) that was not present in microsomes from yeast transformed with pAAH5 alone (1.7 X 10(4) molecules of the expressed P-450 per cell). Microsomes from pAAH5/MP-8 contained no detectable mephenytoin 4'-hydroxylase activity but were more active in tolbutamide hydroxylation, on a nanomoles of P-450 basis, than human liver microsomes. The pAAH5/MP-8 microsomes also contained hexobarbital 3'-hydroxylase activity, although the enrichment compared to liver microsomes was not great with respect to the tolbutamide hydroxylase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Oxygen inhibition of CCl4 metabolism by different isoenzymes of cytochrome P-450 was assessed by studying liver microsomes isolated from control rats and rats treated with phenobarbital or isoniazid. Rates of CCl4 metabolism were similar for all microsomes under a nitrogen atmosphere. An air atmosphere inhibited metabolism by microsomes from control rats to 12% of the value under nitrogen and metabolism by microsomes from rats treated with phenobarbital to 5%. It inhibited metabolism by microsomes from rats treated with isoniazid only to 32%. Rats treated with phenobarbital, which increases hepatic cytochrome P-450 content, or isoniazid, which does not increase hepatic cytochrome P-450 content, both metabolized more CCl4 than control rats as indicated by exhalation of greater quantities of CCl4 metabolites and by an increase in CCl4 toxicity. These results indicate that some isoenzymes of cytochrome P-450 are more effective than others in metabolizing CCl4 when oxygen is present.  相似文献   

12.
Anaerobic in vitro incubation of microsomes from phenobarbital(PB)-induced rats with halothane results in an irreversible decrease of measurable cytochrome P-450. There is a parallel decrease in heme content under the same incubation conditions. However, microsomes from 3-methylcholanthrene(3-MC)-induced or untreated animals do not show a reduction in cytochrome P-450 content. Aerobic incubation with halothane results in a decrease of cytochrome P-450 which can be completely reversed by dialysis or the addition of potassium ferricyanide. These latter treatments only partially restore the cytochrome P-450 levels following anaerobic incubations. The decrease in cytochrome caused by halothane is not associated with measureable heme N-alkyl adduct formation; lipid peroxidation does not play a role as indicated by the lack of effect of 1 mM EDTA or a decrease in glucose-6-phosphatase activity. Halothane metabolites are bound irreversibly to microsomal protein as determined by gel electrophoresis only when the oxygen concentration is very low. The mechanism of cytochrome P-450 decrease is consistent with the formation of a reactive metabolite which binds to the protein portion and also destroys heme.  相似文献   

13.
It has been shown previously that liver microsomal steroid 5 alpha-reductase activity increases with age in female but not male rats, which coincides with a female-specific, age-dependent decline in the cytochrome P-450-dependent oxidation of testosterone to 1 beta-, 2 alpha-, 2 beta-, 6 alpha-, 6 beta-, 7 alpha-, 15 beta-, 16 alpha-, 16 beta-, and 18-hydroxytestosterone and androstenedione. To determine whether the increase in steroid 5 alpha-reductase activity is responsible for the decrease in testosterone oxidation, we have examined the effects of the steroid 5 alpha-reductase inhibitor, 4-MA (17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one), on the pathways of testosterone oxidation catalyzed by rat liver microsomes. We have also determined which hydroxytestosterone metabolites are substrates for steroid 5 alpha-reductase. At concentrations of 0.1 to 10 microM, 4-MA completely inhibited steroid 5 alpha-reductase activity without inhibiting the pathways of testosterone oxidation catalyzed by liver microsomes from rats of different age and sex, and from rats induced with phenobarbital or pregnenolone-16 alpha-carbonitrile. 4-MA (10 microM) had little or no effect on the oxidation of testosterone catalyzed by liver microsomes from mature male rats (which have low steroid 5 alpha-reductase activity). In contrast, the hydroxylated testosterone metabolites formed by liver microsomes from mature female rats (which have high steroid 5 alpha-reductase activity) accumulated to a much greater extent in the presence of 4-MA. Evidence is presented that 4-MA increases the accumulation of hydroxytestosterones by two mechanisms. First, 4-MA inhibited the 5 alpha-reduction of those metabolites (such as 6 beta-hydroxytestosterone) that were found to be excellent substrates for steroid 5 alpha-reductase. In the absence of 4-MA, these metabolites eventually disappeared from incubations containing liver microsomes from mature female rats. Second, 4-MA inhibited the formation of 5 alpha-dihydrotestosterone, which otherwise competed with testosterone for oxidation by cytochrome P-450. This second mechanism explains why 4-MA increased the accumulation of metabolites (such as 7 alpha-hydroxytestosterone) that were found to be poor substrates for steroid 5 alpha-reductase. Despite its marked effect on the accumulation of hydroxylated testosterone metabolites, 4-MA had no effect on their initial rate of formation by liver microsomes from either male or female rats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effects of chloroform on some rat microsomal enzyme activities were studied in vitro. Maximum inhibition of oxygen consumption, NADPH oxidase and NADPH-cytochrome c reductase was observed at 0.5 mM chloroform; prior metabolization of CHCl3 by microsomal monooxygenases increased inhibition by about 50% at 0.2-0.5 mM chloroform. Higher concentrations produced a paradoxical reversal of inhibition, whereas p-nitroanisole demethylase was steadily inhibited by about 50% up to 10 mM chloroform. Irreversible binding of 14CHCl3 was confirmed to depend on chloroform metabolization by monooxygenases. The increased irreversible binding due to phenobarbital induction is accompanied by a diminished affinity towards chloroform as shown by increased KM of irreversible binding, and a higher spectral dissociation constant KS. Aminoacids with nucleophilic functions (histidine, cysteine) partially prevented the irreversible binding of chloroform metabolites to microsomes; non-volatile radioactive derivatives were recovered in trichloracetic acid supernatants when microsomes were incubated with cysteine, but not with histidine. Phosgene has been demonstrated as a biological metabolite of chloroform: its possible reactions with nucleophilic groups of macromolecules, water and added aminoacids partly explain these experimental data. Similar results were obtained with human microsomes, showing that chloroform hepatotoxicity in man could involve the same mechanisms.  相似文献   

15.
1. The activity of mannosyl- and N-acetylglucosamine-1-phosphate transferases in microsomes from pig embryonic liver was linear to 1 min of incubation at 37 degrees C. 2. The activity of both enzymes was higher in the presence of Mg2+ as compared to Mn2+. A maximal stimulatory effect of Mn2+ was obtained at 2 mM concentration and greater concentrations of it inhibited the activities of both enzymes. 3. The activity of mannosyl transferase was found to be highest after treatment of microsomes with Nonidet P-40 while the activity of N-acetylglucosamine-1-phosphate transferase was greatest in the presence of sodium deoxycholate. 4. The Km for acceptor substrate was 1.6 x 10(-5)M in the reaction for dolichol phosphate mannose synthesis and 2.2 x 10(-5)M in the reaction for dolichol pyrophosphate N-acetylglucosamine formation. 5. The Km for GDP-mannose was 1.4 x 10(-5)M and for UDP-N-acetylglucosamine-6.2 x 10(-5)M. At saturating concentrations of donor substrates V values (pmol/min/mg) were 1330 and 150, respectively.  相似文献   

16.
The preferential hydroxylation of (S)-mephenytoin to 4′-hydroxymephenytoin (4′-OH-M) displays a genetic polymorphism of drug metabolism in humans. Thus the excreted 4′-OH-M is considered to be an important marker for the hepatic (S)-mephenytoin 4′-hydroxylase. Accordingly, a mixture of urine containing total 4′-OH-M after enzymatic deconjugation and phenobarbital as internal standard (I.S.) was extracted with absolute diethyl ether. The residue remaining after evaporation was dissolved in 50 μl of eluate and 20 μl were injected into the chromatographic system. All components were separated isocratically on a reversed-phase column using acetonitrile-water (24:76, v/v) as the mobile phase at a flow-rate of 1.2 ml/min. The effluent was monitored at 204 nm. The retention times for 4′-OH-M and the I.S. were within 6 min. The absolute recovery was in the range 84–89% for 4′-OH-M and that of the I.S. was 75.9 ± 4.2%. Quantification was performed by measuring the peak-height ratio compared with the ratio of the amount of 4′-OH-M divided by that of the I.S. The intra- and inter-day variations were less than 8% and 10%, respectively. The proposed method is simpler and more convenient than those reported previously. Its practical applicability was assessed by phenotyping the efficient and deficient hydroxylators among the Chinese minorities and Han Chinese populations.  相似文献   

17.
A simple and selective HPLC method for the determination of 4-hydroxymephenytoin (4-OH-M) in human urine, using a controlled potential coulometric detector equipped with a dual working electrode cell of fully porous graphite, has been developed. After acid hydrolysis of urine, 4-OH-M and the internal standard (I.S.), 5-hydroxy-1-tetralone, were extracted from urine by means of a Bond Elut Certify LRC column. The extracts were chromatographed on a reversed-phase μBondapak C18 column using methanol-50 mM KH2PO4 (pH 4.0) (30:70, v/v) as the mobile phase at a flow-rate of 1.0 ml/min. Electrochemical detection at applied potential of 800 mV resulted in a limit of quantitation of 0.76 μg/ml. The method showed a satisfactory sensitivity, precision, accuracy, recovery and selectivity. The present method was applied to the phenotyping test in thirteen Japanese healthy volunteers who recieved an oral 10-mg racemic mephenytoin. The phenotypes determined by the present method were found to be in agreement with those obtained with the reported customary assay based on gas chromatography.  相似文献   

18.
We examined and compared enantioselectivity in the oxidation of propranolol (PL) by liver microsomes from humans and Japanese monkeys (Macaca fuscata). PL was oxidized at the naphthalene ring to 4-hydroxypropranolol, 5-hydroxypropranolol and side chain N-desisopropylpropranolol by human liver microsomes with enantioselectivity of [R(+)>S(-)] in PL oxidation rates at substrate concentrations of 10 microM and 1 mM. In contrast, reversed enantioselectivity [R(+)相似文献   

19.
The in vitro and in vivo effects of selected natural flavonoids (flavone, flavanone, tangeretin, quercetin, chrysin) on the microsome-catalysed binding of [3H]benzo[a]pyrene to calf thymus DNA were investigated and compared with those of two synthetic flavonoids, 7,8-benzoflavone and 5,6-benzoflavone. In vitro addition of these flavonoids (0.1 mM) to an incubation system containing hepatic microsomes prepared from Aroclor 1254-pretreated rats strongly inhibited BaP-DNA adduct formation (72-89%). The incubation of BaP with hepatic microsomes prepared from animals fed 0.3% quercetin, tangeretin and 7,8-benzoflavone for 2 weeks also resulted in less effective binding of BaP metabolites to added DNA, than with microsomes from untreated rats. Other tested compounds, chrysin, flavone, flavanone and 5,6-benzoflavone showed no or little effect. The influence of flavonoid pretreatment on hepatic microsomal enzymes involved in BaP metabolism has also been examined. Aryl hydrocarbon hydroxylase activity was moderately increased (1.5-1.8-fold) in microsomes prepared from rats fed flavone, tangeretin, 7,8-benzoflavone and 5,6-benzo-flavone. Epoxide hydrolase activity was enhanced by 7,8-benzoflavone (1,6-fold), and by flavone and flavanone (5-fold). These results confirm that flavonoids, in vitro, are potent inhibitors of carcinogen-DNA binding. Oral administration of 0.3% flavonoids alters the properties of liver microsomes, resulting in the decreased ability of BaP metabolites to bind DNA.  相似文献   

20.
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号