首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Inhibition studies have suggested that acyl-CoA synthetase (ACS, EC ) isoforms might regulate the use of acyl-CoAs by different metabolic pathways. In order to determine whether the subcellular locations differed for each of the three ACSs present in liver and whether these isoforms were regulated independently, non-cross-reacting peptide antibodies were raised against ACS1, ACS4, and ACS5. ACS1 was identified in endoplasmic reticulum, mitochondria-associated membrane (MAM), and cytosol, but not in mitochondria. ACS4 was present primarily in MAM, and the 76-kDa ACS5 protein was located in mitochondrial membrane. Consistent with these locations, N-ethylmaleimide, an inhibitor of ACS4, inhibited ACS activity 47% in MAM and 28% in endoplasmic reticulum. Troglitazone, a second ACS4 inhibitor, inhibited ACS activity <10% in microsomes and mitochondria and 45% in MAM. Triacsin C, a competitive inhibitor of both ACS1 and ACS4, inhibited ACS activity similarly in endoplasmic reticulum, MAM, and mitochondria, suggesting that a hitherto unidentified triacsin-sensitive ACS is present in mitochondria. ACS1, ACS4, and ACS5 were regulated independently by fasting and re-feeding. Fasting rats for 48 h resulted in a decrease in ACS4 protein, and an increase in ACS5. Re-feeding normal chow or a high sucrose diet for 24 h after a 48-h fast increased both ACS1 and ACS4 protein expression 1.5-2.0-fold, consistent with inhibition studies. These results suggest that ACS1 and ACS4 may be linked to triacylglycerol synthesis. Taken together, the data suggest that acyl-CoAs may be functionally channeled to specific metabolic pathways through different ACS isoforms in unique subcellular locations.  相似文献   

2.
Peroxisomes of Saccharomyces cerevisiae are the exclusive site of fatty acid beta-oxidation. We have found that fatty acids reach the peroxisomal matrix via two independent pathways. The subcellular site of fatty acid activation varies with chain length of the substrate and dictates the pathway of substrate entry into peroxisomes. Medium-chain fatty acids are activated inside peroxisomes hby the acyl-CoA synthetase Faa2p. On the other hand, long-chain fatty acids are imported from the cytosolic pool of activated long-chain fatty acids via Pat1p and Pat2p, peroxisomal membrane proteins belonging to the ATP binding cassette transporter superfamily. Pat1p and Pat2p are the first examples of membrane proteins involved in metabolite transport across the peroxisomal membrane.  相似文献   

3.
Rat liver peroxisomes catalyze the beta oxidation of fatty acids   总被引:36,自引:0,他引:36  
Peroxisomes were purified by differential and equilibrium density centrifugation from the livers of rats treated with clofibrate to enhance their peroxisomal system of fatty acid oxidation. These purified peroxisomes were tested for the presence of crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase using spectroscopic techniques that utilize the characteristic absorption bands of the appropriate 4-carbon acyl-CoA substrates. All three enzymes were found. Analysis of the fractions from equilibrium density centrifugation revealed major peaks of these enzyme activities in peroxisomes and excluded contamination by mitochondria as an explanation of the results. In the presence of excess CoA the purified peroxisomes oxidized palmitoyl-CoA to acetyl-CoA, and reduced NAD, with a 1:5:5 stoichiometry. The peroxisomes were inactive with butyryl-CoA and less active with octanoyl-CoA than with lauroyl-CoA or palmitoyl-CoA; they appear specialized for the beta oxidation of long chain fatty acids.  相似文献   

4.
5.
6.
Crude mitochondrial fractions were isolated by differential centrifugation of rat liver homogenates. Subfractionation of these fractions on self-generating continuous Percoll gradients resulted in clearcut separation of peroxisomes from mitochondria. Hexacosanoic acid beta-oxidation was present mainly in peroxisomal fractions whereas hexacosanoyl CoA oxidation was present in the mitochondrial as well as in the peroxisomal fractions. The presence of much greater hexacosanoyl CoA synthetase activity in the purified preparations of microsomes and peroxisomes compared to mitochondria, suggests that the synthesis of coenzyme A derivatives of very long chain fatty acids (VLCFA) is limited in mitochondria. We postulate that a specific VLCFA CoA synthetase may be required to effectively convert VLCFA to VLCFA CoA in the cell. This specific synthetase activity is absent from the mitochondrial membrane, but present in the peroxisomal and the microsomal membranes. We postulate that substrate specificity and the subcellular localization of the specific VLCFA CoA synthetase directs and regulates VLCFA oxidation in the cell.  相似文献   

7.
Inhibition by triacsins and troglitazone of long chain fatty acid incorporation into cellular lipids suggests the existence of inhibitor-sensitive and -resistant acyl-CoA synthetases (ACS, EC ) that are linked to specific metabolic pathways. In order to test this hypothesis, we cloned and purified rat ACS1, ACS4, and ACS5, the isoforms present in liver and fat cells, expressed the isoforms as ACS-Flag fusion proteins in Escherichia coli, and purified them by Flag affinity chromatography. The Flag epitope at the C terminus did not alter the kinetic properties of the enzyme. Purified ACS1-, 4-, and 5-Flag isoforms differed in their apparent K(m) values for ATP, thermolability, pH optima, requirement for Triton X-100, and sensitivity to N-ethylmaleimide and phenylglyoxal. The ACS inhibitor triacsin C strongly inhibited ACS1 and ACS4, but not ACS5. The thiazolidinedione (TZD) insulin-sensitizing drugs and peroxisome proliferator-activated receptor gamma (PPARgamma) ligands, troglitazone, rosiglitazone, and pioglitazone, strongly and specifically inhibited only ACS4, with an IC(50) of less than 1.5 microm. Troglitazone exhibited a mixed type inhibition of ACS4. alpha-Tocopherol, whose ring structure forms the non-TZD portion of troglitazone, did not inhibit ACS4, indicating that the thiazolidine-2,4-dione moiety is the critical component for inhibition. A non-TZD PPARgamma ligand, GW1929, which is 7-fold more potent than rosiglitazone, inhibited ACS1 and ACS4 poorly with an IC(50) of greater than 50 microm, more than 100-fold higher than was required for rosiglitazone, thereby demonstrating the specificity of TZD inhibition. Further, the PPARalpha ligands, clofibrate and GW4647, and various xenobiotic carboxylic acids known to be incorporated into complex lipids had no effect on ACS1, -4, or -5. These results, together with previous data showing that triacsin C and troglitazone strongly inhibit triacylglycerol synthesis compared with other metabolic pathways, suggest that ACS1 and ACS4 catalyze the synthesis of acyl-CoAs used for triacylglycerol synthesis and that lack of inhibition of a metabolic pathway by triacsin C does not prove lack of acyl-CoA involvement. The results further suggest the possibility that the insulin-sensitizing effects of the thiazolidinedione drugs might be achieved, in part, through direct interaction with ACS4 in a PPARgamma-independent manner.  相似文献   

8.
This study reveals that the activation of either PPARα (WY 14 643) or PPARβ (GW0742) each induce the translocation of FAT/CD36 from an intracellular pool(s) to the plasma membrane, while PPARβ also induces the subcellular redistribution of FABPpm(Got2) to the plasma membrane. In contrast, activation of PPARγ failed to induce the subcellular redistribution of FAT/CD36 and FABPpm. These PPARα-, and PPARβ-induced changes in the plasmalemmal content of these fatty acid transporters were associated with the concurrent upregulation of fatty acid triacylglycerol esterification (PPARβ) and oxidation (PPARα and PPARβ). Observed effects of chronic PPAR stimulation were not related to either AMPK or ERK1/2 activation.  相似文献   

9.
Activity of peroxisomal acyl-CoA oxidase was measured in homogenates of Aeshna cyanea midguts and found to be reversibly influenced by long-term fasting and refeeding.

The enzyme was immunocytochemically colocalized with catalase in the peroxisomes of the intestinal absorptive cells.

Orally administered nervonic and erucic acids were present in the triacylglycerol fraction of the midgut epithelium together with chain-shortened intermediates. But they were not detected in the diacylglycerol fraction of the haemolymph and triacylglycerol fraction of the fat body, which only contained chain-shortened intermediates. The prevalence of oleic acid in these three fractions suggests that the very long-chain fatty acids tested are assimilated by chain-shortening on their absorptive-pathway across the midgut epithelium.  相似文献   


10.
Catalase activity, a peroxisomal marker enzyme, was not detectable in any of the subcellular fractions of Spodoptera frugiperda (Sf) 21 insect cells, although marker enzymes in other organelles were distributed in the fractions in a manner similar to that seen in mammalian cells. When a green fluorescent protein fused with peroxisome targeting signal 1 at the C-terminal (GFP-SKL) was expressed in Sf21 cells, punctate fluorescent dots were observed in the cytoplasm. The fraction where GFP-SKL was concentrated exhibited long-chain and very-long-chain fatty acid beta-oxidation activities in the presence of KCN and the density of this fraction was slightly higher than that of mitochondria. Immunoelectron microscopy studies with anti-SKL antibody demonstrated that Sf21 cells have immunoreactive peroxisome-like organelles which are structurally distinct from mitochondria, endoplasmic reticulum, and lysosomes. In contrast to peroxisomal matrix proteins, adrenoleukodystrophy protein, a peroxisomal membrane protein, was not located to peroxisomes. This suggests that the targeting signal for PMP in insect cells is distinct from that in mammalian cells. These results demonstrate that Sf21 insect cells have unique catalase-less peroxisomes capable of beta-oxidation of fatty acids.  相似文献   

11.
过氧化物酶体脂肪酸β氧化   总被引:1,自引:1,他引:0  
除线粒体外,过氧化物酶体也是真核细胞脂肪酸β氧化分解的重要部位.过氧化物酶体β氧化过程包括氧化、加水、脱氢和硫解4步反应,主要参与极长链、支链脂肪酸等的分解.近年关于过氧化物酶体β氧化的研究活跃,在代谢途径及功能等方面有了新的认识,尤其在对相关代谢酶的研究中取得了较大进展.本文就过氧化物酶体β氧化相关进展作一综述.  相似文献   

12.
The oxidation of very long chain fatty acids and synthesis of ether glycerolipids (plasmalogens) occurs mainly in peroxisomes. Zellweger's cerebrohepatorenal syndrome (CHRS) is a rare, inherited metabolic disease characterized by an apparent absence of peroxisomes, an accumulation of very long chain fatty acids, and a decrease of plasmalogens in tissues and cultured fibroblasts from these patients. As peroxisomes are ubiquitous in mammalian cells, we examined normal and CHRS-cultured fibroblasts for their presence, using an electron microscopic histochemical procedure for the subcellular localization of catalase, a peroxisomal marker enzyme. Small (0.08-0.20 micron) round or slightly oval peroxisomes were seen in both normal and CHRS fibroblasts. The number of peroxisomes was analyzed morphometrically and found to be significantly reduced in all CHRS cell lines. These results are discussed in relation to the underlying defect in peroxisomal function and biogenesis in this disease.  相似文献   

13.
Rat liver fatty acid-binding protein (FABP) can function as a fatty acid donor protein for both peroxisomal and mitochondrial fatty acid oxidation, since 14C-labeled palmitic acid bound to FABP is oxidized by both organelles. FABP is, however, not detected in peroxisomes and mitochondria of rat liver by ELISA. Acyl-CoA oxidase activity of isolated peroxisomes was not changed by addition of FABP or flavaspidic acid, an inhibitor of fatty acid binding to FABP, nor by disruption of the peroxisomal membranes. These data indicate that FABP may transfer fatty acids to peroxisomes, but is not involved in the transport of acyl-CoA through the peroxisomal membrane.  相似文献   

14.
The effects of clofibrate feeding on the metabolism of polyunsaturated fatty acids were studied in isolated rat hepatocytes. Administration of clofibrate stimulated the oxidation and particularly the peroxisomal beta-oxidation of all the fatty acids used. The increase in oxidation products was markedly higher when n-3 fatty acids were used as substrate, indicating that peroxisomes contribute more to the oxidation of n-3 than n-6 fatty acids. The whole increase in oxidation could be accounted for by a corresponding decrease in acylation in triacylglycerol while the esterification in phospholipids remained unchanged. A marked stimulation of the amounts of newly synthesized C16 and C18 fatty acids recovered, was observed when 18:2(n-6), 20:3(n-6), 18:3 (n-3) and 20:5(n-3), but not when 20:4(n-6) and 22:4(n-6) were used as substrate. This agrees with the view that extra-mitochondrial acetyl-CoA produced from peroxisomal beta-oxidation is more easily used for fatty acid new synthesis than acetyl-CoA from mitochondrial beta-oxidation. The delta 6 and delta 5 desaturase activities were distinctly higher in cells from clofibrate fed rats indicating a stimulating effect.  相似文献   

15.
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.  相似文献   

16.
In rat liver, peroxisome proliferators induce profound changes in the number and protein composition of peroxisomes, which upon subcellular fractionation is reflected in heterogeneity in sedimentation properties of peroxisome populations. In this study we have investigated the time course of induction of the peroxisomal proteins catalase, acyl-CoA oxidase (ACO) and the 70 kDa peroxisomal membrane protein (PMP70) in different subcellular fractions. Rats were fed a di(2-ethylhexyl)phthalate (DEHP) containing diet for 8 days and livers were removed at different time-points, fractionated by differential centrifugation into nuclear, heavy and light mitochondrial, microsomal and soluble fractions, and organelle marker enzymes were measured. Catalase was enriched mainly in the light mitochondrial and soluble fractions, while ACO was enriched in the nuclear fraction (about 30%) and in the soluble fraction. PMP70 was found in all fractions except the soluble fraction. DEHP treatment induced ACO, catalase and PMP70 activity and immunoreactive protein, but the time course and extent of induction was markedly different in the various subcellular fractions. All three proteins were induced more rapidly in the nuclear fraction than in the light mitochondrial or microsomal fractions, with catalase and PMP70 being maximally induced in the nuclear fraction already at 2 days of treatment. Refeeding a normal diet quickly normalized most parameters. These results suggest that induction of a heavy peroxisomal compartment is an early event and that induction of 'small peroxisomes', containing PMP70 and ACO, is a late event. These data are compatible with a model where peroxisomes initially proliferate by growth of a heavy, possibly reticular-like, structure rather than formation of peroxisomes by division of pre-existing organelles into small peroxisomes that subsequently grow. The various peroxisome populations that can be separated by subcellular fractionation may represent peroxisomes at different stages of biogenesis.  相似文献   

17.
Peroxisomes are subcellular organelles present in virtually all eukaryotic cells catalysing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. One of the major functions of peroxisomes concerns their role in lipid metabolism, which includes: (i) fatty acid betaoxidation; (ii) ether phospholipid synthesis; (iii) fatty acid alpha-oxidation; and (iv) isoprenoid biosynthesis. In this paper, we review the current state of knowledge concerning the peroxisomal fatty acid alpha- and beta-oxidation systems with particular emphasis on the enzymes involved and the various disorders of fatty acid oxidation in peroxisomes. We also pay attention to the fact that some of the metabolites that accumulate as the result of a defect in peroxisomal alpha- and/or beta-oxidation are activators of members of the family of nuclear receptors, including peroxisome-proliferator-activated receptor alpha.  相似文献   

18.
beta-Oxidation of unsaturated fatty acids was studied with isolated solubilized or nonsolubilized peroxisomes or with perfused liver isolated from rats treated with clofibrate. gamma-Linolenic acid gave the higher rate of beta-oxidation, while arachidonic acid gave the slower rate of beta-oxidation. Other polyunsaturated fatty acids (including docosahexaenoic acid) were oxidized at rates which were similar to, or higher than, that observed with oleic acid. Experiments with 1-14C-labeled polyunsaturated fatty acids demonstrated that these are chain-shortened when incubated with nonsolubilized peroxisomes. Spectrophotometric investigation of solubilized peroxisomal incubations showed that 2,4-dienoyl-CoA esters accumulated during peroxisomal beta-oxidation of fatty acids possessing double bond(s) at even-numbered carbon atoms. beta-Oxidation of [1-14C]docosahexaenoic acid by isolated peroxisomes was markedly stimulated by added NADPH or isocitrate. This fatty acid also failed to cause acyl-CoA-dependent NADH generation with conditions of assay which facilitate this using other acyl-CoA esters. These findings suggest that 2,4-dienoyl-CoA reductase participation is essential during peroxisomal beta-oxidation if chain shortening is to proceed beyond a delta 4 double bond. Evidence obtained using arachidionoyl-CoA, [1-14C]arachidonic acid, and [5,6,8,9,11,12,14,15-3H]arachidonic acid suggests that peroxisomal beta-oxidation also can proceed beyond a double bond positioned at an odd-numbered carbon atom. Experiments with isolated perfused livers showed that polyunsaturated fatty acids also in the intact liver are substrates for peroxisomal beta-oxidation, as judged by increased levels of the catalase-H2O2 complex on infusion of polyunsaturated fatty acids.  相似文献   

19.
1. Subfractionation by isopycnic density-gradient centrifugation in self-generating Percoll gradients of peroxisome-rich fractions prepared by differential centrifugation confirmed the presence of acyl-CoA synthetase in peroxisomes. Peroxisomes did not contain nicotinamide or adenine nucleotides other than CoA. 2. The gradient fractions most enriched in peroxisomes were pooled and the peroxisomes sedimented by centrifugation, resulting in a 50-fold-purified peroxisomal preparation as revealed by marker enzyme analysis. 3. Palmitate oxidation by intact purified peroxisomes was CoA-dependent, whereas palmitoyl-CoA oxidation was not, demonstrating that the peroxisomal CoA was available for the thiolase reaction, located in the peroxisomal matrix, but not for acyl-CoA synthetase. This suggests that the latter enzyme is located at the cytoplasmic side of the peroxisomal membrane. 4. Additional evidence for this location of peroxisomal acyl-CoA synthetase was as follows. Mechanical disruption of purified peroxisomes resulted in the release of catalase from the broken organelles, but not of acyl-CoA synthetase, indicating that the enzyme was membrane-bound. Acyl-CoA synthetase was not latent, despite the fact that at least one of its substrates appears to have a limited membrane permeability, as evidenced by the presence of CoA in purified peroxisomes. Finally, Pronase, a proteinase that does not penetrate the peroxisomal membrane, almost completely inactivated the acyl-CoA synthetase of intact peroxisomes.  相似文献   

20.
Peroxisomes are single membrane bound organelles present in almost all eukaryotic cells, and to date have been shown to contain approximately 60 identified enzymes involved in various metabolic pathways, including the oxidation of a variety of lipids. These lipids include very long-chain fatty acids, methyl branched fatty acids, prostaglandins, bile-acid precursors and xenobiotics that are either β-oxidized or α-oxidized in peroxisomes. The recent identification of several acyl-CoA thioesterases and acyltransferases in peroxisomes has revealed their various functions in acting as auxiliary enzymes in α- and β-oxidation in this organelle. To date, 9 functional acyl-CoA thioesterases and acyltransferases have been identified in mouse and 4 functional acyl-CoA thioesterases and acyltransferases in human, thus these enzymes make up a substantial portion of peroxisomal proteins. This review will therefore focus on new and emerging roles for these enzymes in assisting with the oxidation of various lipids, amidation of lipids for excretion from peroxisomes, and in controlling coenzyme A levels in peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号