首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Over the past 30 years southern New England, USA has been invaded by several species of ascidians, including Botrylloides violaceus, Diplosoma listerianum, Styela clava, and Ascidiella aspersa. These species have become dominate in coastal embayments and marinas but are usually absent from more open water coastal areas. A colonial ascidian, Didemnum sp. has invaded southern New England during the past 10 years and we first observed this species in eastern Long Island Sound in 2000. It has become the dominant at several field sites while remaining in low abundance at others. We conducted an experiment at two places, a protected marina and an open coast site, to examine its ability to compete with the established fouling community. Small colonies of Didemnum were transplanted onto panels with communities that varied in age from one to four weeks old and these treatments along with controls with only Didemnum were exposed at both sites. In most treatments Didemnum became a dominant species in the communities at both sites but it reached higher abundances at the open coast site. Potential causes of the observed differences are predation on other species of ascidians at the open coast site reducing recruitment of these species and competition, lower tolerance for elevated temperatures at the marina site, or other environmental parameters that might affect growth rates.  相似文献   

2.
ABSTRACT

Predation is potentially an in?uential source of early post-settlement mortality of benthic marine invertebrates, but previous studies demonstrate con?icting results. We investigated the effect of large predators on developing subtidal invertebrate communities in cobble-?lled collectors in the southwest Bay of Fundy, Canada. Two predation treatments (exclusion of predators ≥ 7 mm body width or full access for predators < 50 mm) were used to test the effect of large predators, and a partial-cage control tested for caging artefacts. Despite a reduction in the abundance and biomass of large predators, multivariate analyses indicated no effect of predator exclusion on the composition of the prey and micropredator communities. Results indicated that the largest differences were between the predator-access treatment and the other two treatments, which was potentially in?uenced by the caging material. There were signi?cant but weak positive correlations between the micropredator and the other two communities. Previous studies indicate that at low predation intensity, as seemed to be the case here, other factors may play a stronger role in controlling recruit abundance. Predation control probably varies spatially and temporally, and the in?uence of large predators was not likely the driving force for early post-settlement mortality in the invertebrate communities measured in this study.  相似文献   

3.
Invasive ascidians are a growing concern for ecologists and natural resource managers, yet few studies have documented their short- and long-term temporal patterns of abundance. This study focuses on the invasion of the Gulf of Maine by the colonial ascidians Botryllus schlosseri, Botrylloides violaceus, Diplosoma listerianum and Didemnum sp. A. We examined the time of arrival and potential vectors for these four invasive ascidians using survey data (collected from 1969 onwards) and literature documentation. We also compared the dominance and seasonal patterns of abundance of these species using data from two identical panel studies; one conducted from 1979 to 1980, the other from 2003 to 2005. Didemnum and Botrylloides were most likely first introduced into the Damariscotta River, Maine in the early 1970's through oyster aquaculture while Botryllus and Diplosoma were probably transported by commercial and recreational vessels. The overall abundance of colonial ascidians has increased since 1979 and 1980. Botryllus was the only invasive colonial ascidian present during the 1979 to 1980 study and accounted for an average of 6.16% cover on panels. From 2003 to 2005, the more recently arrived colonial ascidians Botrylloides and Didemnum accounted for 7.38% and 2.08% cover respectively, while Botryllus covered only 1.16%. Our results reveal a shift in seasonal abundance between 1979 to 1980 and 2003 to 2004. In 1979 and 1980, colonial ascidians had the highest percent cover in fall and winter while in 2003 and 2005 they had highest percent cover in summer and fall. Seasonal patterns of space occupation by colonial ascidians were correlated with seasonal changes in seawater temperature.  相似文献   

4.
Most organisms in intertidal areas are marine in origin; many have distributions that extend into the subtidal zone. Terrestrial predators such as mammals and birds may exploit these animals during low tide and can have considerable effects on intertidal food webs. Several studies have shown that avian predators are capable of reducing densities of sessile and slow-moving intertidal invertebrates but very few studies have considered avian predation on mobile invertebrate predators such as crabs. In this study, we investigated predation by Great Black-backed Gulls (Larus marinus Linnaeus) on three species of crabs (Cancer borealis Stimpson, Cancer irroratus Say, and Carcinus maenas Linnaeus). The study was at Appledore Island, ME (a gull breeding island) and 8 other sites throughout the Gulf of Maine, including breeding islands and mainland sites. On Appledore Island, intertidal and subtidal zones provided over one-third of prey remains found at gull nests, and crabs were a substantial proportion (∼ 30% to 40%) of the total remains. Similarly, collections of prey remains from intertidal areas indicated that crabs were by far the most common marine prey. C. borealis was eaten far more often and C. irroratus and C. maenas less often than expected at each site. Comparing numbers of carapaces to densities of crabs in low intertidal and shallow subtidal zones at each site, we estimated that gulls remove between 15% and 64% of C. borealis during diurnal low tides. The proportion of C. borealis eaten by gulls was independent of proximity to a gull colony. Approximately 97% of the outer coast of Maine is within 20 km of a breeding island. Thus, a lot of gull predation on crabs may occur throughout the Gulf of Maine during summer months. Crabs are important predators of other invertebrates; if predation by gulls reduces the number of crabs in intertidal and shallow subtidal areas, gulls may have important indirect effects on intertidal food webs.  相似文献   

5.
6.
Effects of two presumably dominant competitors, the blue mussel Mytilus edulis and the barnacle Balanus improvisus on recruitment, population dynamics and community structure on hard substrata were experimentally investigated in the subtidal Kiel Fjord, Western Baltic. The hypothesis that blue mussels and/or barnacles are local dominants and strongly influence succession and community structure was tested by monitoring succession in the presence and absence of simulated predation on either or both species. Manipulations included blue mussel removal, barnacle removal, combined blue mussel and barnacle removal, as well as a control treatment for natural (non-manipulated) succession. In the second part of the experiment, recovery from the treatments was monitored over 1 year.During the manipulative phase of the experiment, blue mussels had a negative effect on recruitment of species, whereas barnacles had no significant effect. Even so, a negative synergistic effect of blue mussels and barnacles was detected. Calculation of species richness and diversity H′ (Shannon Index) showed a negative synergistic effect of blue mussels and barnacles on community structure. Additionally, diversity H′ was negatively affected by the dominant competitor M. edulis. These effects were also detectable in the ANOSIM-Analysis. The non-manipulative phase of the experiment brought about a drastic loss of diversity and species richness. Blue mussels dominated all four communities. Barnacles were the only other species still being able to coexist with mussels. Effects of simulated predation disappeared fast.Thus, in the absence of predation on blue mussels, M. edulis within a few months dominates available space, and diversity of the benthic community is low. In contrast, when mussel dominance is controlled by specific predators, more species may persist and diversity remains high.  相似文献   

7.
Summary

Processes affecting the growth and mortality of the juvenile benthic life-stages that immediately follow larval metamorphosis and settlement are as important as those processes controlling the supply of settling larvae or later interactions among established adults. In addition, the ecology of juveniles is of ten distinctly different from that of other life-stages, including differences in interactions with predators and competitors and responses to the physical environment. In particular, newly-settled stages of ten experience quantitatively or qualitatively different predation than older life-stages. We have documented this in a New England hard substrate community where the wrasse, Tautogolabrus adspersus, and two species of tiny gastropods, Mitrella lunata and Anachis lafresnayi, prey on newly-settled andjuvenile ascidians but not on adults. An extensive series of field experiments was conducted using artificial pilings placed subtidally. Results demonstrated that (1) the predators were extremely active and fairly specific in their prey, (2) predators could eliminate prey species regardless of settlement densities, (3) predation varied drastically with life-stage, and (4) predators control community structure and composition by altering the number of settling larvae that survived their first several weeks to become identifiable recruits. Because of differences in predator abundances the development and species dominance within the community varied drastically between sites.  相似文献   

8.
Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.  相似文献   

9.
For species recruiting into established sessile communities, the adult colonies and individuals already present form a significant part of the environment and have the potential to alter both larval settlement rates and post-settlement mortality. Settlement rates can be reduced by predation on larvae, by the removal or addition of substratum space, or by stimulation or prohibition of larvae from settling on adjacent substratum. Once attached, the recruiting individual can still be influenced by predation or overgrowth by residents, by the added physical structure for firmer attachment, or by being camouflaged from motile predators. To examine those processes by which residents affect recruitment we exposed experimental substrata with three densities of adults of a single species at a site in eastern Long Island Sound, USA for a 1-wk period. Seven different species of common invertebrates were used in nine separate experiments. The major effect of most resident species was the usurpation of space and the restricting of recruitment to adjacent unoccupied areas. This was particularly true for resident ascidians and bryozoans, but less so for barnacles and oysters. In fact several species recruited in higher densities on or next to oysters and barnacles. Comparison to 1-day settlement experiments indicated that the encrusting ascidian species Diplosoma and possibly Botryllus reduced recruitment relative to settlement, probably by overgrowing newly-settled individuals. However, in the presence of most resident species, recruitment patterns were not greatly different from settlement patterns, indicating that the effects of the attached community on recruitment may result from influences on settlement.  相似文献   

10.
Subtidal benthic communities show distinct patterns of community structure related to substrate angle. Suspension-feeding invertebrate communities often dominate vertical and undercut rock surfaces, while macroalgae dominate horizontal surfaces. One factor that may shape this pattern is sea urchin grazing, which is often more intense on horizontal surfaces. The native Gulf of Maine ascidian Aplidium glabrum, like other native ascidians, is generally restricted to vertical and undercut rock walls, whereas the introduced ascidian Botrylloides violaceous is often abundant on horizontal surfaces. We tested the hypothesis that this pattern could be due to differing predation intensity on these two ascidians by Strongylocentrotus droebachiensis, a dominant omnivore in the Gulf of Maine. Feeding preference of S. droebachiensis on the native A. glabrum vs. B. violaceous was estimated in the laboratory and in field experiments. Laboratory results show that S. droebachiensis prefers to feed on the native ascidian A. glabrum over B. violaceous. In the field, potential differences in the impact of S. droebachiensis on the two species were masked by the much greater growth rate of B. violaceus compared to A. glabrum. These results may help explain observed patterns in ascidian distribution in the Gulf of Maine, and ultimately the overall success of B. violaceus as a major invader throughout New England.  相似文献   

11.
Marine anthropogenic structures offer novel niches for introduced species but their role in the subsequent invasion to natural habitats remains unknown. Upon arrival in new environments, invaders must overcome biotic resistance from native competitors and predators if they are to establish successfully in natural habitats. We tested the hypotheses that (1) artificial structures (e.g., suspended aquaculture installations) present a niche opportunity for invasive species by providing a refuge from native benthic predators, and (2) native predators in natural benthic habitats suppress successful colonization by invaders. A recruitment experiment showed that the ascidians Pyura chilensis (native) and Ciona intestinalis (invasive) could recruit to both suspended artificial structures and natural benthic habitats. Ciona, however, was only able to establish adult populations on artificial structures. In natural benthic habitats Ciona only recruited and grew in predator-exclusion cages, because without this protection predation prevented its establishment. In predation experiments, native invertebrate and fish predators removed all invasive ascidians (recruits and adults) in benthic habitats, which contrasted with the high adult survival of the native ascidian P. chilensis. The refuge from a number of benthic predators facilitates the establishment of large populations of invasive species on suspended structures. We present a conceptual model of the invasion processes that includes the anthropogenic structures as a transitional stepping-stone that facilitates invasion by enhancing and prolonging propagule supply to surrounding natural communities. Those established invaders might then overcome biotic resistance during time periods when populations of consumers or competitors are weakened by natural or anthropogenic disturbances. Our results suggest that the conservation of natural habitats with a high diversity of native predators can be an effective means to prevent the spread of invasive species growing on suspended structures.  相似文献   

12.
Planktivory is believed to be a major selective force in marine systems, but little is known about how the intensity of planktivory risk varies spatially or temporally. We assessed seasonal daytime planktivory patterns over fifteen months (Apr 2003 to Jun 2004) at a temperate site in eastern Long Island Sound, CT. Planktivory was measured using modified Plankton Tethering Units (PTUs) deployed from floating docks and baited with live brine shrimp. Planktivory risk varied throughout the year. The highest levels of risk occurred in Aug, Sept and Oct (85%, 75% and 42.5% of brine shrimp consumed, respectively), the lowest levels of risk occurred from Dec to Apr. Mean monthly consumption of brine shrimp strongly correlated with the presence of planktivorous fish. Many species of benthic invertebrates exhibited high levels of recruitment during times of the year when planktivory risk was high, although some species recruited when planktivory risk was low. These seasonal planktivory patterns (highest risk occurring during the late summer and early fall) may be typical for many temperate near-shore habitats, especially those associated with man-made structures (e.g., floating docks, pilings).  相似文献   

13.
Many shallow water subtidal habitats in Massachusetts, USA have recently been invaded by five non-indigenous ascidian species: Ascidiella aspersa, Botrylloides violaceus, Didemnum sp., Diplosoma listerianum and Styela clava. This study examined the effects of seawater temperature, as a proxy for climate change, on B. violaceus and D. listerianum and the impact these ascidians have on native sessile fouling communities. Field experiments were conducted over a four month period at two locations (Lynn and Woods Hole, MA) to examine growth dynamics over regional thermal and geographic ranges. Invasive ascidians occupied as much as 80% of the primary substratum and accounted for the majority of species richness. B. violaceus and D. listerianum growth were similar at both study sites, but initial colony growth of D. listerianum was positively affected by temperature. B. violaceus and D. listerianum exhibited rapid two-week growth rates during the summer months with more rapid growth at the warmer Woods Hole site. Competition for space between B. violaceus and D. listerianum typically resulted in neutral borders between colonies. Overgrowth occurred if the colony of one species was disproportionably larger than the colony of the other species. Recruitment and growth of native species influenced the long-term composition of experimental communities more than the pre-seeding with B. violaceus or D. listerianum colonies. Elevated temperatures, however, increased initial growth of B. violaceus and D. listerianum and may have facilitated the species success to invade the communities during crucial periods of introduction. With projected global climate change, a rise in sea surface temperatures may exacerbate the cumulative impacts of invasions on benthic communities and facilitate the invasion of other non-native ascidian species.  相似文献   

14.
Predation may often influence native species dynamics and so may be important for the control of introduced species as well. Here, we examine how predation can regulate fouling communities on artificial substrates in the coast of Brazil. Specifically, we tested whether predators limit colonization and establishment of introduced species. A predation experiment using plastic plates as experimental replicates (predator excluded and not excluded) was carried out in Ceará, Bahia, São Paulo and Santa Catarina, between 3°S and 27°S. Ninety-eight species colonized the plates, 14 of which were introduced. While species richness was similar among the treatments (except in Santa Catarina), community structure varied by treatment and introduced species were less abundant in the predation treatment at all sites. Also, predation was selective and controlled introduced, poorly defended, species, specifically ascidians. Thus, biotic resistance driven by predation was not ubiquitous but apparently targets one group of major economic and environmental impact. As a consequence, introduced barnacles were released from competition with dominant ascidians and thus the ecosystem service (biotic resistance) performed by fish alone was unable to completely avoid or control the introduction of non-native species. Control measures must rely on various approaches, but if we want fish to contribute in this control, it is very important to conserve the local native assembly of predators in order to reap their benefits in this ecosystem service.  相似文献   

15.
Predation on flatfish during the early juvenile stage is an important factor regulating year-class strength and recruitment. In this study, immunological dietary analysis was performed on green crabs (Carcinus maenas) collected from the Niantic River, Connecticut, in an effort to evaluate the predatory impact of this species on post-settlement winter flounder (Pseudopleuronectes americanus). Through the use of species-specific antiserum, winter flounder proteins were identified in 4.8% of the green crab stomachs analyzed (n = 313, size range = 14-74 mm carapace width, CW), revealing that crabs ≥ 29 mm CW are predators of post-settlement winter flounder in natural populations. The most significant factor underlying the predator-prey interaction was the relative size relationship between species, such that the incidence of winter flounder remains in the stomach contents of green crabs was positively correlated with predator-to-prey size ratio. Results from dietary analysis were incorporated into a deterministic model to estimate the average daily instantaneous mortality and cumulative mortality of winter flounder owing to green crab predation. Accordingly, green crabs may account for 0.4% to 7.7% (mean = 2.2%) of the daily mortality of winter flounder and consume 1.1% to 32.3% (mean = 10.2%) of the flounder year-class. Model simulations further indicate that variations in green crab abundance and size-structure account for the greatest variability in winter flounder mortality. Relative to other macro-crustacean predators, however, predation by green crabs has a minimal effect on winter flounder survival, due in large part to the low densities of these crabs in temperate estuaries.  相似文献   

16.
The diet of pearly razorfish Xyrichtys novacula, caught monthly along the shores of the Island of Lampedusa, appeared to be mainly composed of crustaceans, followed by colonial ascidians, molluscs and polychaetes. Among prey, sand dwellers and phanerogam‐associated species were recorded. In winter months, the diet was characterized by a small number of prey items, dominated by colonial ascidians, while in spring and summer a wider prey array was recorded. Dietary indices show that X. novacula do not strictly exploit benthic prey but also pelagic organisms, such as copepods. This feeding behaviour reached its peak in March and October, when the abundance of primary consumers was at its highest after phytoplankton blooms. Furthermore, X. novacula caught prey organisms according to their availability and seasonal patterns during their life cycles, irrespective of fish size.  相似文献   

17.
Antarctic and sub-Antarctic benthic invertebrates are subjected to intense predation by mobile macroinvertebrates. Accordingly, chemical protection as well as other defensive mechanisms are expected to be common in organisms inhabiting these ecosystems. In order to evaluate anti-predation activities and allocation of chemical defenses within the anatomy of marine benthic Antarctic and sub-Antarctic invertebrates, 55 species were tested for feeding repellence against the sea star Odontaster validus, a common eurybathic sympatric predator. The invertebrates tested were collected from the deep waters of two poorly surveyed areas in terms of chemical ecology studies: the eastern Weddell Sea (Antarctica) and the vicinities of Bouvet Island (sub-Antarctica). Experiments were conducted at the Spanish Antarctic Base in Deception Island. In the feeding deterrence experiments, shrimp pieces were treated with crude lipophilic fractions obtained from each species, and were offered to the sea stars. A total of 29 species (53 %) from 7 different phyla (Porifera, Cnidaria, Chordata, Bryozoa, Echinodermata, Mollusca, and Annelida) showed feeding repellence against O. validus, and are therefore chemically protected against this keystone predator. Furthermore, 25 species were dissected into parts to investigate the possible allocation of defensive compounds. Some of the results obtained from these analyses support the prediction that the most exposed/vulnerable tissues concentrate chemical defenses to avoid predation against the sea stars. In summary, the results obtained in our survey support the hypothesis that deep-water Antarctic and sub-Antarctic benthic invertebrates are well protected chemically against sympatric predators, similarly to what has been reported in previous studies investigating shallow-water Antarctic species.  相似文献   

18.
The predatorThanasimus formicarius (L.) (Coleoptera, Cleridae) and its preyIps typographus (L.) (Coleoptera, Scolytidae) were studied in the laboratory and the field. In the laboratory, 11T. formicarius laid 71–132 eggs (mean=162) during 66–123 days. During this time they ate 66–132I. typographus adults per pair (male +female). The number of eggs laid per female was not correlated with life span or the number ofIps eaten. In the field, predation byT. formicarius larvae and other natural enemies onI. typographus brood was studied in the last year of an outbreak. Caged and uncaged spruce bolts attacked byI. typographus were used, and pairs ofT. formicarius were released in the cages. The treatments were: uncaged bolts, caged bolts withoutT. formicarius, caged bolts with 4T. formicarius pairs, and caged bolts with 8T. formicarius pairs. The productivity ofI. typographus was highest in the caged bolts withoutT. formicarius (mean=4.5 offspring/female) and lowest in the uncaged bolts (mean=0.9 offspring/female). The density ofI. typographus galleries was similar in the different treatments. Hence, the variation in productivity between treatments could not have been due to differences in the levels of intraspecific competition. There was no difference in bark beetle productivity or density ofT. formicarius larvae between bolts with 4 pairs ofT. formicarius and bolts with 8 pairs (mean=2.5 offspring/female). This indicates that some kind of interference occurred betweenT. formicarius individuals (e.g. cannibalism) and that a maximum level of predation was reached. Predation by larvae ofMedetera spp. (Diptera, Dolichopodidae),Thanasimus spp. and other beetles, and parasitism by wasps (Hymenoptera, Pteromalidae) probably caused the low productivity in the uncaged bolts.   相似文献   

19.
Seagrass beds provide food and shelter for many fish species. However, the manner in which fishes use seagrass bed habitats often varies with life stage. Juvenile fishes can be especially dependent on seagrass beds because seagrass and associated habitats (drift macroalgae) may provide an effective tradeoff between shelter from predation and availability of prey. This study addressed aspects of habitat use by post-settlement pinfish, Lagodon rhomboides (Linneaus), an abundant and trophically important species in seagrass beds in the western North Atlantic and Gulf of Mexico. Abundance of post-settlement fish in seagrass beds was positively related to volume of drift macroalgae, but not to percent cover of seagrass, indicating a possible shelter advantage of the spatially complex algae. Tethering experiments indicated higher rates of predation in seagrass without drift macroalgae than in seagrass with drift macroalgae. Aquarium experiments showed lower predation with higher habitat complexity, but differences were only significant for the most extreme cases (unvegetated bottom, highest macrophyte cover). Levels of dissolved oxygen did not differ between vegetated and unvegetated habitats, indicating no physiological advantage for any habitat. Seagrass beds with drift macroalgae provide the most advantageous tradeoff between foraging and protection from predation for post-settlement L. rhomboides. The complex three-dimensional shelter of drift macroalgae provides an effective shelter that is embedded in the foraging habitat provided by seagrass. Drift macroalgae in seagrass beds is a beneficial habitat for post-settlement L. rhomboides by reducing the risk of predation, and by providing post-settlement habitat within the mosaic (seagrass beds) of adult habitat, thus reducing risks associated with ontogenetic habitat shifts.  相似文献   

20.

Small fishes suffer high mortality rates on coral reefs, primarily due to predation. Although studies have identified the predators of early post-settlement fishes, the predators of small cryptobenthic fishes remain largely unknown. We therefore used a series of mesocosm experiments with natural habitat and cryptobenthic fish communities to identify the impacts of a range of small potential predators, including several invertebrates, on prey fish populations. While there was high variability in predation rates, many members of the cryptobenthic fish community act as facultative cryptopredators, being prey when small and piscivores when larger. Surprisingly, we also found that smashing mantis shrimps may be important fish predators. Our results highlight the diversity of the predatory community on coral reefs and identify previously unknown trophic links in these complex ecosystems.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号