首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
3.
We investigated the role of nitric oxide (NO) in ABA-inhibition of stomatal opening in Vicia faba L. in different size dishes. When a large dish (9 cm diameter) was used, ABA induced NO synthesis and the NO scavenger reduced ABA-inhibition of stomatal opening. When a small dish (6 cm diameter) was used, ABA induced stomatal closure and inhibited stomatal opening. The NO scavenger was able to reduce ABA-induced stomatal closure, but unable to reverse ABA-inhibition of stomatal opening. Furthermore, NO was not synthesized in response to ABA, indicating that NO is not required for ABA-inhibition of stomatal opening in the small dish. These results indicated that an NO-dependent and an NO-independent signaling pathway participate in ABA signaling pathway. An NO-dependent pathway is the major player in ABA-induced stomatal closure. However, in ABA-inhibition of stomatal opening, an NO-dependent and an NO-independent pathway act: different signaling molecules participate in ABA-signaling cascade under different environmental condition.Key words: ABA, environmental condition, nitric oxide, stomata, Vicia faba LNitric oxide (NO) is a key signaling molecule in plants.1,2 It functions in disease resistance and programmed cell death,3,4 root development,5,6 and plant responses to various abiotic stresses.1,2,7,8 In addition, NO is required for stomatal closure in response to ABA in several species including Arabidopsis, Vicia faba, pea, tomato, barley, and wheat.911 ABA-inhibition of stomatal opening is a distinct process from ABA-induced stomatal closure.12,13 In V. faba, these two processes employ a similar signaling pathway; NO is also a second messenger molecule for ABA-inhibition of stomatal opening in a large dish.14 In this study, we examined the role of NO in ABA-inhibition of stomatal opening using different dish sizes. In a small dish, NO is not involved in ABA-inhibition of stomatal opening: the NO-independent signaling pathway is the major player in it.  相似文献   

4.
5.
The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10−3 M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.Key words: ethylene receptor mutant, never ripe, nitric oxide, reactive oxygen species, root apex, salicylic acid, tomatoSeveral signal molecules, including salicylic acid (SA) have been implicated in the response of plants to biotic13 and abiotic stressors.46 SA was identified as a central regulator of local defense against (hemi)biotophic pathogens inducing a hypersensitive response (HR), which is characterized by the development of lesions that restrict pathogen spread. It has also emerged as a possible signaling component involved in the activation of certain plant defense responses in non-infected part of the plants establishing the systemic acquired resistance (SAR).7The SA-induced biotic and abiotic stress adaptation most likely involves reactive oxygen species (ROS) and nitric oxide (NO) in primary signaling events that activate multiple signal transduction pathways. SA-induced ROS is required for the activation of antioxidant defense mechanisms4 and if the generation of ROS exceeds the capacity of antioxidant systems, the cells die.8 NO is another important player that is required for the induction of defense mechanisms9 or for ROS-induced cell death.10Accumulation of SA, and two other plant hormones, ethylene (ET) and jasmonic acid (JA) are intimately associated with the initiation or spread of cell death. In HR SA and ROS have been proposed to be on a positive feedback loop that amplifies signals and leads to programmed cell death (PCD). Ethylene caused increased spreading of cell death, while lesion containment can be achieved by JA through decreasing the sensitivity of the cells to ethylene and through the suppression of SA biosynthesis and signaling.8Ethylene evolution is associated with diverse physiological processes such as leaf and flower senescence, abscission of organs and fruit ripening.11 The biosynthesis of ethylene is stimulated by a variety of abiotic and biotic stress factors. Ethylene overproducing mutants (eto1 and eto3) of Arabidopsis were found to be more sensitive to O3, an abiotic stressor which induces ROS-dependent cell death.12 Cadmium-induced cell death was also accompanied by increased production of ethylene and simultaneously by H2O2 accumulation in tomato cell suspension, and based on the effect of specific inhibitors of ethylene biosynthesis and action the authors concluded that the cell death process required H2O2 production and a functional ethylene signaling pathway.13 Ethylene signaling is also required for the susceptible disease response of tomato plants infected with Xanthomonas campestris pv vesicatoria.14 It was found that the accumulation of SA and increased production of ethylene were important components of the disease symptoms of this pathogen in wild-type plants, while in Never ripe (Nr) mutants, which have a non-functional ethylene receptor, the infected plants failed to accumulate SA, produced less ethylene, and the leaves exhibited reduced necrotic lesions.It has been also shown that SA enhances NO synthesis in a dose-dependent manner.15 ROS, such as ·O2 and H2O2 as well as NO can act together in the cell death regulation and propagation.8,16 The compartment-specific (down)regulation of ROS can be controlled by NO, accordingly, ROS and NO homeostasis may be essential for the induction or for the avoidance of cell death.  相似文献   

6.
7.
8.
The ability of plants to produce nitric oxide (NO) is now well recognised. In plants, NO is involved in the control of organ development and in regulating some of their physiological functions. We have recently shown that pollen generates NO in a constitutive manner and have measured both intra- and extracellular production of this radical. Furthermore, we have shown that nitrite accumulates in the media surrounding the pollen and have suggested that the generation of these signaling molecules may be important for the normal interaction between the pollen grain and the stigma on which it alights. However, pollen grains inevitably come into contact with other tissues, including those of animals and it is likely that the NO produced will influence the behavior of the cells associated with these tissues. Such non-animal-derived, NO-mediated effects on mammalian cells may not be restricted to pollen and plant debris and fungal spore-derived NO may elicit similar effects.Key words: allergy, fungal spores, nitric oxide, nitrite, pollenNitric oxide (NO) has been recognised as a signaling molecule for 20+ years, but its roles in controlling cellular activity are far from fully understood. In plants, NO is involved in numerous biological processes1 including seed germination,2 floral development,3 the control of stomatal closure4 and root gravitropism5 and is also known to affect gene expression.6 Recently, we showed that pollen of Arabidopsis, Senecio and Tradescantia produces NO,7 and speculated that its role in this specific context is to help orchestrate early signaling events of the pollen-stigma interaction.7,8 We subsequently showed that NO generation by pollen is more widespread among angiosperms and not just restricted to the species that were first investigated.9 Obviously, this intracellular generation of NO could influence the internal biochemistry of the pollen grain and pollen tube. However, for it to impact on other tissues, such as the stigma, on which the pollen grains alight during pollination, the NO generated would have to be released into the extracellular matrix.To demonstrate that pollen grains do indeed release NO to their surroundings we employed a water soluble derivative of the fluorescent NO probe, diaminofluorescein (DAF), to show that the 525 nm emission of the surrounding solution increased with time and that this fluorescence could be removed by scavenging the NO released from the pollen with compounds such as 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Thus, it is quite conceivable that, in vivo, NO produced by pollen moves into the extracellular matrix where it exerts an influence on the activity of cells in the adjacent tissues. Interestingly, in vitro rehydration of the pollen (analagous to the regulated hydration of pollen on the stigma) was needed before NO evolution could be measured. Normally, some form of specific stimulation, such as that which occurs either during pathogenesis10 or which results from the increased hormone levels observed during stomatal closure,11 is required to initiate NO production by plant tissues. Thus, it is interesting here, that water appears to be the signaling cue to initiate constitutive NO release by the pollen.As a result of its free radical nature, NO is notoriously difficult to measure. As the chemistry involved in their reactivity has become better understood, doubts have been raised concerning the specificity of many of the fluorescent probes that have been used for its detection.12 Commonly the fluorescent NO probe, DAF, is used, but similar alternative probes such as diamino-rhodamine (DAR) have recently also been described.13 Here, Figure 1 shows the NO-dependent fluorescence of DAR4M-AM-infused Brassica napus pollen and the associated temporal increase in the fluorescence of the extracellular medium containing a cell impermeable form of the dye. Despite the use of these different dye-based probes, it has still proved important to use other approaches to detect pollen NO production to refute the possibility that similarly reactive free radicals other than NO are responsible for the increased fluorescence observed. We have, therefore, confirmed our fluorescence measurements using electron paramagnetic resonance (EPR) techniques9 which have also indicated the presence of NO. Thus, the use of both fluorescent probe and EPR approaches point to the generation and release of NO from the pollen of all the plant species studied.Open in a separate windowFigure 1The diamino-rhodamine dyes, DAR4M-AM (cell permeable) and DAR4M (cell impermeable), can be used to detect intra- and extracellular pollen-derived nitric oxide (NO) respectively. Aqueous suspensions of Brassica napus sp. pollen were incubated for 15 min at room temp in 10 µM DAR4M-AM either without (A) or with (B) 200 µM of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). In each case, after removal of the excess dye and resuspension of the pollen in 10% (v/v) glycerol, the accumulated DAR4M-AM fluorescence signals within the pollen grains were detected by spinning disc, laser scanning, confocal microscopy with excitation at 560 nm and emission detection at 575 nm. The extracellular accumulation with time of the NO-associated fluorescence signal of the dye, DAR4M, in the media was also followed spectrophotometrically (C). Using the same excitation and emission detection wavelengths, the fluorescence of aqueous suspensions of the pollen in 10 µM DAR4M either without (Ci) or with (Cii) 200 “M cPTIO was monitored over a 10 min. period at room temp. The output fluorescence signal with time is presented in relative units.An additional NO detection technique based on ozone chemiluminescence was also used to confirm the data obtained.9 Unlike the fluorescence and EPR approaches which measure the accumulated production of NO, this method detects the steady-state levels of NO at any given time. However, as these levels proved to be very low and not readily detectable by this approach, we altered the assay conditions so as to measure the nitrite that accumulated as a result of NO oxidation in the extracellular media. While the nitrite that accumulated in the media could have done so as a result of being directly excreted by the pollen, the results obtained were in accordance with the earlier observations that pollen evolves NO.9 Neither should nitrite be dismissed as a mere downstream by-product. Not only is it the substrate for the production of NO by enzymes such as nitrate reductase,14 it can also act as a cell signaling molecule in its own right15 effecting increased cGMP production, increases in different cytochrome P450 activities and the induction of specific gene expression.Having established that pollen produces NO and nitrite, the mechanisms underlying their generation and subsequent signaling require determination. In mammalian cells the production of NO by a family of nitric oxide synthase enzymes is well understood.16 However, attempts to find plant homologues have so far proved unsuccessful, with the sole proposed candidate17 having now been shown to be a G protein.1820 Nitrate reductase is clearly one source of NO in plants,11,14 but whether other enzymes exist which are similarly involved remains a matter for debate and discovery. Obviously, as plant NO synthesising enzymes are identified their function in the generation of NO and nitrite in pollen will need to be established.Originally,7 we suggested that pollen-derived NO is integral to the pollen-stigma interaction and this now needs to be determined. Nevertheless, the NO and nitrite released externally by pollen may also affect the cells of any moist tissues on which pollen grains land. Such cells may include, for example, those lining mammalian nasal passages. It is well established that NO helps orchestrate the activity of cells involved in human immune responses16 and this begs the question as to whether or not pollen-produced NO alters these responses during, for example, the onset of the symptoms of hayfever? Many plant cells produce NO, particular during stress and after wounding21 and damaged plant tissues that come into contact with human cells in environments that create such debris also have the potential to elicit similar responses. The reaction of mammalian cells to fungi, which are known to possess NOS enzymes22 and whose spores are a main contributor to asthma,23 may also be similarly mediated.To conclude, pollen grains appear to generate both NO and nitrite constitutively. Determining the functional significance and ramifications of this production in terms of both endogenous and exogenous cell signaling is an important focus for future research.  相似文献   

9.
Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in tobacco BY-2 cells. We have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms. In the present study, we extend our current knowledge of the DHS signaling pathway, by demonstrating that DHS also promotes a production of nitric oxide (NO) in tobacco BY-2 cells. As for H2O2, this NO production is not necessary for cell death induction.Key words: tobacco BY-2 cells, sphingolipids, LCBs, dihydrosphingosine, sphinganine, apoptosis, programmed cell death (PCD), nitric oxide (NO)These last few years, it has been demonstrated in plants that long chain bases (LCBs), the sphingolipid precursors, are important regulators of different cellular processes including programmed cell death (PCD).13 Indeed, plant treatment with fumonisin B1 or AAL toxin, two mycotoxins that disrupt sphingolipid metabolism, leads to an accumulation of the dihydrosphingosine (d18:0, DHS), one of the most abundant free LCB in plants and correlatively to the induction of cell death symptoms.4,5 A more recent study shows a rapid and sustained increase of phytosphingosine (t18:0), due to a de novo synthesis from DHS, when Arabidopsis thaliana leaves are inoculated with the avirulent strain Pseudomonas syringae pv. tomato (avrRpm1), known to induce a localized PCD called hypersensitive response (HR).6 More direct evidences were obtained from experiments on Arabidopsis cells where external application of 100 µM C2-ceramide, a non-natural acylated LCB, induced PCD in a calcium (Ca2+)-dependent manner.7 Recently, we have shown that DHS elicited rapid Ca2+ increases both in the cytosol and the nucleus of tobacco BY-2 cells and correlatively induced apoptotic-like response. Interestingly, blocking nuclear Ca2+ changes without affecting the cytosolic Ca2+ increases prevented DHS-induced PCD.8Besides calcium ions, reactive oxygen species (ROS) have also been suggested to play an important role in the control of PCD induced by sphingolipids in plants.9 Thus, the C2-ceramide-induced PCD in Arabidopsis is preceded by an increase in H2O2.7 However, inhibition of ROS production by catalase, a ROS-scavenging enzyme, did not prevent C2-ceramide-induced cell death, suggesting that this PCD is independent of ROS generation. Moreover, we recently showed in tobacco BY-2 cells that DHS triggers a dose-dependent production of H2O2 via activation of a NADPH oxidase.10 The DHS-induced cytosolic Ca2+ transient is required for this H2O2 production while the nuclear calcium variation is not necessary. In agreement with the results of Townley et al. blocking the ROS production using diphenyleniodonium (DPI), a known inhibitor of NADPH oxidases, does not prevent DHS-induced cell death. Gene expression analysis of defense-related genes, using real-time quantitative PCR (RT-qPCR) experiments, rather indicates that H2O2 generation is likely associated with basal defense mechanisms.10In the present study, we further investigated the DHS signaling cascade leading to cell death in tobacco BY-2 cells, by evaluating the involvement of another key signaling molecule i.e., nitric oxide (NO). In plants, NO is known to play important roles in numerous physiological processes including germination, root growth, stomatal closing and adapative response to biotic and abiotic stresses (reviewed in ref. 1114). NO has also been shown to be implicated in the induction of PCD in animal cells,15 in yeast,16 as well as in plant cells, in which it is required for tracheid differentiation17 or HR activation.18,19 Interestingly in the latter case, the balance between NO and H2O2 production appears to be crucial to induce cell death.20 Here we show in tobacco BY-2 cells that although DHS elicits a production of NO, this production is not necessary for the induction of PCD.  相似文献   

10.
11.
Intracellular components in methyl jasmonate (MeJA) signaling remain largely unknown, to compare those in well-understood abscisic acid (ABA) signaling. We have reported that nitric oxide (NO) is a signaling component in MeJA-induced stomatal closure, as well as ABA-induced stomatal closure in the previous study. To gain further information about the role of NO in the guard cell signaling, NO production was examined in an ABA- and MeJA-insensitive Arabidopsis mutant, rcn1. Neither MeJA nor ABA induced NO production in rcn1 guard cells. Our data suggest that NO functions downstream of the branch point of MeJA and ABA signaling in Arabidopsis guard cells.Key words: abscisic acid, Arabidopsis thaliana, guard cells, methyl jasmonate, nitric oxideStomatal pores that are formed by pairs of guard cells respond to various environmental stimuli including plant hormones. Some signal components commonly function in MeJA- and ABA-induced stomatal closing signals,1 such as cytosolic alkalization, ROS generation and cytosolic free calcium ion elevation. Recently, we demonstrated that NO functions in MeJA signaling, as well as ABA signaling in guard cells.2NO production by nitric oxide synthase (NOS) and nitrate reductase (NR) plays important roles in physiological processes in plants.3,4 It has been shown that NO functions downstream of ROS production in ABA signaling in guard cells.5 NO mediates elevation of cytosolic free Ca2+ concentration ([Ca2+]cyt), inactivation of inward-rectifying K+ channels and activation of S-type anion channels,6 which are known to be key factors in MeJA- and ABA-induced stomatal closure.2,79It has been reported that ROS was not induced by MeJA and ABA in the MeJA- and ABA-insensitive mutant, rcn1 in which the regulatory subunit A of protein phosphatase 2A, RCN1, is impaired.7,10 We examined NO production induced by MeJA and ABA in rcn1 guard cells (Fig. 1). NO production by MeJA and ABA was impaired in rcn1 mutant (p = 0.87 and 0.25 for MeJA and ABA, respectively) in contrast to wild type. On the other hand, the NO donor, SNP induced stomatal closure both in wild type and rcn1 mutant (data not shown). These results are consistent with our previous results, i.e., NO is involved in both MeJA- and ABA-induced stomatal closure and functions downstream of the branching point of MeJA and ABA signaling in Arabidopsis guard cells.7 Our finding implies that protein phosphatase 2A might positively regulate NO levels in guard cells (Fig. 2).Open in a separate windowFigure 1Impairment of MeJA- and ABA-induced NO production in rcn1 guard cells. (A) Effects of MeJA (n = 10) and ABA (n = 9) on NO production in wild-type guard cells. (B) Effects of MeJA (n = 7) and ABA (n = 7) on NO production in rcn1 guard cells. The vertical scale represents the percentage of diaminofluorescein-2 diacetate (DAF-2 DA) fluorescent levels when fluorescent intensities of MeJA- or ABA-treated cells are normalized to control value taken as 100% for each experiment. Each datum was obtained from at least 30 guard cells. Error bars represent standard errors. Significance of differences between data sets was assessed by Student''s t-test analysis in this paper. We regarded differences at the level of p < 0.05 as significant.Open in a separate windowFigure 2A model of signal interaction in MeJA-induced and ABA-induced stomatal closure. Neither MeJA nor ABA induces ROS production, NO production, IKin and stomatal closure in rcn1 mutant. These results suggest that NO functions downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

12.
13.
14.
Reactive oxygen species in aerobic methane formation from vegetation   总被引:1,自引:0,他引:1  
The first report of aerobic methane emissions from vegetation by an unknown mechanism1 suggested that this potential new source may make a significant contribution to global methane emissions. We recently investigated possible mechanisms and reported2,3 experiments in which UV-irradiation caused methane emissions from pectin, a major plant cell wall polysaccharide. Our findings also suggest that UV-generated reactive oxygen species (ROS) release methane from pectin. This has implications for all other, UV-independent processes which may generate ROS in or close to the plant cell wall and suggests a need to evaluate additional systems for ROS-generated methane emissions in leaves.Key words: methane, hydroxyl radicals, reactive oxygen species, UV, methyl esters, pectinUntil recently, the global methane budget was thought to be well understood, the only natural process for methane generation being an anaerobic microbial mechanism.4 However, observations by Keppler et al.1 of aerobic methane emissions from vegetation caused controversy and called for a re-assessment of the natural sources of methane. While no mechanism was originally suggested, a putative source, the methyl ester groups of pectin, was proposed based on carbon isotope analyses.1 We tested this hypothesis directly and reported that UV light could drive methane emissions from pectin in vitro under aerobic conditions.2 While UV light was necessary for generation of methane from pectin, it is not tenable that UV was directly attacking pectic methyl ester groups since these do not absorb UV of the wavelengths used (280–400 nm). Instead, we proposed that the energy from the UV light was being absorbed by compounds such as phenolics, and that a reactive intermediary would be formed in the process. Importantly, our process had to be non-enzymic since no enzymes were present in either experimental system.1,2 Following this hypothesis, we tested the effect of reactive oxygen species (ROS) on pectin in vitro and discovered that certain ROS cause production of methane: hydroxyl radicals (OH) and singlet oxygen were effective, but hydrogen peroxide and superoxide were not.3 Also, the addition of ROS-specific scavengers to pectin sheets stopped or severely reduced UV-induced methane emissions from pectin, suggesting that ROS are the intermediary in the mechanism of aerobic methane formation from pectin (Fig. 1). De-esterified pectin was produced by saponification and emitted only trace amounts of methane upon UV-irradiation, clearly establishing ester groups as the source of methane2,3 and confirming findings of other research groups.5,6 However, we also found that acetyl ester groups may contribute to methane emissions from pectin and should therefore be considered in future experiments attempting to identify methane sources. Interestingly, we also observed, for the first time, ethylene, ethane and CO2 emissions from pectin upon UV-irradiation,2 which corroborates the ROS hypothesis since ROS attack of methyl esters is likely to form methyl radicals, which can then either form methane or dimerise to form ethylene or ethane.Open in a separate windowFigure 1Proposed pathway for OH-driven methane generation from pectin upon UV irradiation. The compound illustrated here, l-tryptophan, is merely an example of a possible photosensitiser. Hydroxyl radicals (OH) are shown to attack a methyl galacturonate residue of the homogalacturonan component of the pectin molecule since this is likely to be the most abundant source of methane, but the methyl esters found in xylogalacturonan domains and the acetyl esters found in homogalacturonan and rhamnogalacturonan domains are also possible methane sources. Note that only ∼70% of all galacturonic acid residues of the pectin backbone are methyl-esterified. Inset photograph shows experimental set-up during UV-irradiation of pectin.ROS are produced and destroyed constantly throughout the lifetime of plants. The generation of ROS in vivo can generally be linked to two sources: (i) a response to an external stimulus which may be perceived as a threat or (ii) a signaling process in the cell which may happen during growth, hormone action or programmed cell death.7 Our experiments showed that ROS could lead to methane formation from methyl ester groups; however, the origin of the ROS may not be important, only their nature. Indeed, hydrogen peroxide and superoxide, widely reported to be formed during an oxidative burst following a biotic stress,8 did not generate methane from pectin in vitro, and are therefore unlikely to do so in vivo. Only the hydroxyl radical (OH) and singlet oxygen generation led to methane formation, and therefore any process which generates them could also trigger UV-independent methane production. Abiotic stresses, such as drought, heat or salinity, which have been shown to lead to the production of OH in vegetation,9 could therefore be processes leading to aerobic methane formation, as could exposure to elevated ozone concentrations.10 Indeed, physical injury (by cutting) of plant material has recently been demonstrated to cause methane emissions.11The origin of the ROS may not be important, as long as their generation is in or close to the pectin of the plant cell wall, since OH cannot travel far within a cell. Indeed, it is estimated that OH typically reacts with organic matter within ∼1 nm of the site of radical production.12 Processes such as growth13,14 and calcium signaling,15 which both involve ROS production as an intermediary in the mechanism but are not necessarily due to external stress, may therefore have the potential to generate methane aerobically. Any process involved in the complicated pathways of ROS-regulation, for which 152 genes are responsible in Arabidopsis thaliana,16 could be involved in methane emission if the ROS generation is localised close to pectin or other potential substrates.In addition, hydrogen peroxide, which is generated in the cell walls of healthy plants,17 can be converted in the cell wall into OH by processes such as the Fenton reaction,18,19 especially in the presence of apoplastic ascorbate.20,21 A complete analysis of the potential for OH and singlet oxygen to be present in the plant cell wall is therefore necessary for a proper understanding of the different mechanisms that may drive aerobic methane generation. Further experiments into the effects of abiotic stresses other than UV on aerobic methane production from different types of vegetation are necessary in order that future in-vitro studies under simulated natural conditions can be carried out correctly. This type of study, in conjunction with direct in-vivo field studies and satellite observations, are essential to allow global estimates to be made accurately in the future and help us understand the significance of ROS-driven methane emission.  相似文献   

15.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号