首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane‐associated Ca2+‐binding protein–2 (PCaP2) of Arabidopsis thaliana is a novel‐type protein that binds to the Ca2+/calmodulin complex and phosphatidylinositol phosphates (PtdInsPs) as well as free Ca2+. Although the PCaP2 gene is predominantly expressed in root hair cells, it remains unknown how PCaP2 functions in root hair cells via binding to ligands. From biochemical analyses using purified PCaP2 and its variants, we found that the N–terminal basic domain with 23 amino acids (N23) is necessary and sufficient for binding to PtdInsPs and the Ca2+/calmodulin complex, and that the residual domain of PCaP2 binds to free Ca2+. In mutant analysis, a pcap2 knockdown line displayed longer root hairs than the wild‐type. To examine the function of each domain in root hair cells, we over‐expressed PCaP2 and its variants using the root hair cell‐specific EXPANSIN A7 promoter. Transgenic lines over‐expressing PCaP2, PCaP2G2A (second glycine substituted by alanine) and ?23PCaP2 (lacking the N23 domain) exhibited abnormal branched and bulbous root hair cells, while over‐expression of the N23 domain suppressed root hair emergence and elongation. The N23 domain was necessary and sufficient for the plasma membrane localization of GFP‐tagged PCaP2. These results suggest that the N23 domain of PCaP2 negatively regulates root hair tip growth via processing Ca2+ and PtdInsP signals on the plasma membrane, while the residual domain is involved in the polarization of cell expansion.  相似文献   

2.
3.
PEP-19 is a small, intrinsically disordered protein that binds to the C-domain of calmodulin (CaM) via an IQ motif and tunes its Ca2+ binding properties via an acidic sequence. We show here that the acidic sequence of PEP-19 has intrinsic Ca2+ binding activity, which may modulate Ca2+ binding to CaM by stabilizing an initial Ca2+-CaM complex or by electrostatically steering Ca2+ to and from CaM. Because PEP-19 is expressed in cells that exhibit highly active Ca2+ dynamics, we tested the hypothesis that it influences ligand-dependent Ca2+ release. We show that PEP-19 increases the sensitivity of HeLa cells to ATP-induced Ca2+ release to greatly increase the percentage of cells responding to sub-saturating doses of ATP and increases the frequency of Ca2+ oscillations. Mutations in the acidic sequence of PEP-19 that inhibit or prevent it from modulating Ca2+ binding to CaM greatly inhibit its effect on ATP-induced Ca2+ release. Thus, this cellular effect of PEP-19 does not depend simply on binding to CaM via the IQ motif but requires its acidic metal binding domain. Tuning the activities of Ca2+ mobilization pathways places PEP-19 at the top of CaM signaling cascades, with great potential to exert broad effects on downstream CaM targets, thus expanding the biological significance of this small regulator of CaM signaling.  相似文献   

4.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

5.
6.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

7.

Background

Tryptophan-histidine (Trp-His) was found to suppress the activity of the Ca2 +/calmodulin (CaM)-dependent protein kinases II (CaMKII), which requires the Ca2 +-CaM complex for an initial activation. In this study, we attempted to clarify whether Trp-His inhibits Ca2 +-CaM complex formation, a CaMKII activator.

Methods

The ability of Trp-His and other peptides to inhibit Ca2 +-CaM complex formation was investigated by a Ca2 +-encapsulation fluorescence assay. The peptide-CaM interactions were illustrated by molecular dynamic simulation.

Results

We showed that Trp-His inhibited Ca2 +-CaM complex formation with a 1:1 binding stoichiometry of the peptide to CaM, considering that Trp-His reduced Hill coefficient of Ca2 +-CaM binding from 2.81 to 1.92. His-Trp also showed inhibitory activity, whereas Trp + His, 3-methyl His-Trp, and Phe-His did not show significant inhibitory activity, suggesting that the inhibitory activity was due to a peptide skeleton (irrespective of the sequence), a basic amino acid, a His residue, the N hydrogen atom of its imidazole ring, and Trp residue. In silico studies suggested the possibility that Trp-His and His-Trp interacted with the Ca2 +-binding site of CaM by forming hydrogen bonds with key Ca2 +-binding residues of CaM, with a binding free energy of − 49.1 and − 68.0 kJ/mol, respectively.

Conclusions

This is the first study demonstrating that the vasoactive dipeptide Trp-His possesses inhibitory activity against Ca2 +-CaM complex formation, which may elucidate how Trp-His inhibited CaMKII in a previous study.

General significance

The results provide a basic idea that could lead to the development of small peptides binding with high affinity to CaM and inhibiting Ca2 +-CaM complex formation in the future.  相似文献   

8.
Calmodulin (CaM) is the major pathway that transduces intracellular Ca2+ increases to the activation of a wide variety of downstream signaling enzymes. CaM and its target proteins form an integrated signaling network believed to be tuned spatially and temporally to control CaM's ability to appropriately pass signaling events downstream. Here, we report the spatial diffusivity and availability of CaM labeled with enhanced green fluorescent protein (eGFP)-CaM, at basal and elevated Ca2+, quantified by the novel fluorescent techniques of raster image scanning spectroscopy and number and brightness analysis. Our results show that in basal Ca2+ conditions cytoplasmic eGFP-CaM diffuses at a rate of 10 μm2/s, twofold slower than the noninteracting tracer, eGFP, indicating that a significant fraction of CaM is diffusing bound to other partners. The diffusion rate of eGFP-CaM is reduced to 7 μm2/s when a large (646 kDa) target protein Ca2+/CaM-dependent protein kinase II is coexpressed in the cells. In addition, the presence of Ca2+/calmodulin-dependent protein kinase II, which can bind up to 12 CaM molecules per holoenzyme, increases the stoichiometry of binding to an average of 3 CaMs per diffusive molecule. Elevating intracellular Ca2+ did not have a major impact on the diffusion of CaM complexes. These results present us with a model whereby CaM is spatially modulated by target proteins and support the hypothesis that CaM availability is a limiting factor in the network of CaM-signaling enzymes.  相似文献   

9.
Calcium (Ca2+) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca2+ signaling is mediated through the calcium-binding protein known as calmodulin (CaM)1,2. CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve growth, inflammation and the immune response. A number of proteins help regulate these pathways through their interaction with CaM. Many of these interactions depend on the conformation of CaM, which is distinctly different when bound to Ca2+ (Ca2+-CaM) as opposed to its Ca2+-free state (ApoCaM)3.While most target proteins bind Ca2+-CaM, certain proteins only bind to ApoCaM. Some bind CaM through their IQ-domain, including neuromodulin4, neurogranin (Ng)5, and certain myosins6. These proteins have been shown to play important roles in presynaptic function7, postsynaptic function8, and muscle contraction9, respectively. Their ability to bind and release CaM in the absence or presence of Ca2+ is pivotal in their function. In contrast, many proteins only bind Ca2+-CaM and require this binding for their activation. Examples include myosin light chain kinase10, Ca2+/CaM-dependent kinases (CaMKs)11 and phosphatases (e.g. calcineurin)12, and spectrin kinase13, which have a variety of direct and downstream effects14.The effects of these proteins on cellular function are often dependent on their ability to bind to CaM in a Ca2+-dependent manner. For example, we tested the relevance of Ng-CaM binding in synaptic function and how different mutations affect this binding. We generated a GFP-tagged Ng construct with specific mutations in the IQ-domain that would change the ability of Ng to bind CaM in a Ca2+-dependent manner. The study of these different mutations gave us great insight into important processes involved in synaptic function8,15. However, in such studies, it is essential to demonstrate that the mutated proteins have the expected altered binding to CaM.Here, we present a method for testing the ability of proteins to bind to CaM in the presence or absence of Ca2+, using CaMKII and Ng as examples. This method is a form of affinity chromatography referred to as a CaM pull-down assay. It uses CaM-Sepharose beads to test proteins that bind to CaM and the influence of Ca2+ on this binding. It is considerably more time efficient and requires less protein relative to column chromatography and other assays. Altogether, this provides a valuable tool to explore Ca2+/CaM signaling and proteins that interact with CaM.  相似文献   

10.
Calcium is necessary for secretion of pituitary hormones. Many of the biological effects of Ca2+ are mediated by the Ca2+-binding protein calmodulin (CaM), which interacts specifically with proteins regulated by the Ca2+-CaM complex. One of these proteins is myosin light chain kinase (MLCK), a Ca2+-calmodulin dependent enzyme that phosphorylates the regulatory light chains of myosin, and has been implicated in motile processes in both muscle and non-muscle tissues. We determined the content and distribution of CaM and CaM-binding proteins in bovine pituitary homogenates, and subcellular fractions including secretory granules and secretory granule membranes. CaM measured by radioimmunoassay was found in each fraction; although approximately one-half was in the cytosolic fraction, CaM was also associated with the plasma membrane and secretory granule fractions. CaM-binding proteins were identified by an 251-CaM gel overlay technique and quantitated by densitometric analysis of the autoradiograms. Pituitary homogenates contained nine major CaM-binding proteins of 146, 131, 90, 64, 58, 56, 52, 31 and 22 kilodaltons (kDa). Binding to all the bands was specific, Cat+-sensitive, and displaceable with excess unlabeled CaM. Severe heat treatment (100°C, 15 min), which results in a 75% reduction in phosphodiesterase activation by CaM, markedly decreased 251I-CaM binding to all protein bands. Secretory granule membranes showed enhancement for CaM-binding proteins with molecular weights of 184, 146, 131, 90, and 52000. A specific, affinity purified antibody to chicken gizzard MLCK bound to the 146 kDa band in homogenates, centrifugal subcellular fractions, and secretory granule membranes. No such binding was associated with the granule contents. The enrichment of MLCK and other CaM-binding proteins in pituitary secretory granule membranes suggests a possible role for CaM and/or CaM-binding proteins in granule membrane function and possibly exocytosis.  相似文献   

11.
The epithelial Ca2+ channel transient receptor potential vanilloid 6 (TRPV6) undergoes Ca2+-induced inactivation that protects the cell from toxic Ca2+ overload and may also limit intestinal Ca2+ transport. To dissect the roles of individual signaling pathways in this phenomenon, we studied the effects of Ca2+, calmodulin (CaM), and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in excised inside-out patches. The activity of TRPV6 strictly depended on the presence of PI(4,5)P2, and Ca2+-CaM inhibited the channel at physiologically relevant concentrations. Ca2+ alone also inhibited TRPV6 at high concentrations (IC50 = ∼20 μm). A double mutation in the distal C-terminal CaM-binding site of TRPV6 (W695A/R699E) essentially eliminated inhibition by CaM in excised patches. In whole cell patch clamp experiments, this mutation reduced but did not eliminate Ca2+-induced inactivation. Providing excess PI(4,5)P2 reduced the inhibition by CaM in excised patches and in planar lipid bilayers, but PI(4,5)P2 did not inhibit binding of CaM to the C terminus of the channel. Overall, our data show a complex interplay between CaM and PI(4,5)P2 and show that Ca2+, CaM, and the depletion of PI(4,5)P2 all contribute to inactivation of TRPV6.  相似文献   

12.
Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427–437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors.  相似文献   

13.
Protein 4.1G (4.1G) is a widely expressed member of the protein 4.1 family of membrane skeletal proteins. We have previously reported that Ca2+-saturated calmodulin (Ca2+/CaM) modulates 4.1G interactions with transmembrane and membrane-associated proteins through binding to Four.one-ezrin–radixin–moesin (4.1G FERM) domain and N-terminal headpiece region (GHP). Here we identify a novel mechanism of Ca2+/CaM-mediated regulation of 4.1G interactions using a combination of small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, and circular dichroism spectroscopy analyses. We document that GHP intrinsically disordered coiled structure switches to a stable compact structure upon binding of Ca2+/CaM. This dramatic conformational change of GHP inhibits in turn 4.1G FERM domain interactions due to steric hindrance. Based upon sequence homologies with the Ca2+/CaM-binding motif in protein 4.1R headpiece region, we establish that the 4.1G S71RGISRFIPPWLKKQKS peptide (pepG) mediates Ca2+/CaM binding. As observed for GHP, the random coiled structure of pepG changes to a relaxed globular shape upon complex formation with Ca2+/CaM. The resilient coiled structure of pepG, maintained even in the presence of trifluoroethanol, singles it out from any previously published CaM-binding peptide. Taken together, these results show that Ca2+/CaM binding to GHP, and more specifically to pepG, has profound effects on other functional domains of 4.1G.  相似文献   

14.
The myristoylated alanine-rich C kinase substrate (MARCKS) and the MARCKS-related protein (MRP) are members of a distinct family of protein ki-nase C (PKC) substrates that bind calmodulin (CaM) in a manner regulated by Ca2+ and phosphorylation by PKC. The CaM binding region overlaps with the PKC phosphorylation sites, suggesting a potential coupling between Ca2+-CaM signalling and PKC-mediated phosphorylation cascades. We have studied Ca2+ binding of CaM complexed with CaM binding peptides from MARCKS and MRP using flow dialysis, NMR and circular dichroism (CD) spectroscopy. The wild-type MARCKS and MRP peptides induced significant increases in the Ca2+ affinity of CaM (pCa 6.1 and 5.8, respectively, compared to 5.2, for CaM in the absence of bound peptides), whereas a modified MARCKS peptide, in which the four serine residues susceptible to phosphorylation in the wild-type sequence have been replaced with aspartate residues to mimic phosphorylation, had smaller effect (pCa 5.6). These results are consistent with the notions that phosphorylation of MARCKS reduces its binding affinity for CaM and that the CaM binding affinity of the peptides is coupled to the Ca2+ affinity of CaM. All three MARCKS/MRP peptides perturbed the backbone NMR resonances of residues in both the N- and C-terminal domains of CaM and, in addition, the wild-type MARCKS and the MRP peptides induced strong positive cooperativity in Ca2+ binding by CaM, suggesting that the peptides interact with the amino- and carboxy-terminal domains of CaM simultaneously. NMR analysis of the Ca2+-CaM-MRP peptide complex, as well as CD measurements of Ca2+-CaM in the presence and absence of MARCKS/MRP peptides suggest that the peptide bound to CaM is non-helical, in contrast to the α-helical conformation found in the CaM binding regions of myosin light-chain kinase and CaM-dependent protein kinase II. The adaptation of the CaM molecule for binding the peptide requires disruption of its central helical linker between residues Lys-75 and Glu-82. Received: 26 September 1996 / 22 October 1996  相似文献   

15.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

16.
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca2+-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the “open” and “closed” conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM’s inhibitors correlated well with available experimental data as the r2 obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca2+-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca2+-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca2+-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.  相似文献   

17.
The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19-26°C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding.  相似文献   

18.
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca2+ binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca2+ but not Mg2+ and undergoes significant conformational changes in both secondary and tertiary structure upon Ca2+ binding. The Ca2+-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca2+-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.  相似文献   

19.
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29–47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.  相似文献   

20.
Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号