首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28° C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx. Received: 22 January 1997 / Revised: 5 April 1997 / Accepted: 26 June 1997  相似文献   

2.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

3.
This study was designed to examine the effect of exposure to two levels of light intensity (bright; 5000 lux, dim; 50 lux) prior to supramaximal cycle exercise on performance and metabolic alterations. The exercise was performed after bright and dim light exposure for 90 minutes. Ten male long-distance runners volunteered to take part in the study. They performed 45-sec supramaximal exercise using a cycle ergometer in a 500-lux. Mean power output was measured during the exercise. Lactate and ammonia in the blood and epinephrine and norepinephrine concentrations in plasma were measured at rest immediately after bright and dim light exposures and after the exercise. Bright and dim light exposure prior to exercise did not significantly affect the power output during the exercise. Blood glucose concentration immediately after exercise and plasma epinephrine during the resting period were significantly lower after bright light exposure compared with dim light exposure (p < 0.05). No significant difference was found in blood lactate, ammonia, or plasma norepinephrine levels after exercise following bright and dim light exposures. This study demonstrated that bright light stimulation prior to supramaximal exercise decreases glucose and epinephrine levels, but is not related to physical performance.  相似文献   

4.
On the basis of our previous findings that bright-light exposure during the daytime has profound influence on physiological parameters such as melatonin secretion and tympanic temperature in humans, we proposed the hypothesis that bright vs. dim light-exposure during the daytime has a different influence on the activity of the digestive system via the endocrine and/or autonomic nervous system. To examine this hypothesis, we conducted a series of counterbalanced experiments in which subjects stayed the daytime (7:00 to 15:00h) under either a dim (80 lux) or bright (5,000 lux) light condition. We measured gastrointestinal activity using a breath hydrogen (indicative of carbohydrate malabsorption) and an electrogastrography (EGG, indicative of gastric myoelectric activity) test. The results showed the postprandial breath hydrogen excretion during the following nighttime period after daytime exposure to the dim-light condition was significantly higher than under the bright-light condition (p < 0.05). In addition, the spectrum total power of the EGG recorded after taking the evening meal was significantly lower for the dim than bright-light condition (p < 0.05). These results support our hypothesis and indicate that dim-light exposure during the daytime suppresses the digestion of the evening meal, resulting in malabsorption of dietary carbohydrates in it.  相似文献   

5.
Increased nasal air flow during exercise was examined as a possible heat loss avenue contributing to selective brain cooling in hyperthermic humans. On 2 separate days, eight subjects [mean (SE) age, 26.4 (1.2) years] exercised on a cycle ergometer in a warm room [28 (0.2)°C; 28 (5)% relative humidity] to induce a moderate level of hyperthermia. In one session the nostrils were physically dilatated [average dilatation 1.55 (0.17) times] and in the other they were not (control). Both sessions started with a 5-min resting period; then subjects pedaled at 60 W for 5 min, 100 W for 15 min, and 150 W for 20 min. During dilatation both tympanic temperature (T ty) and forehead skin blood flow, estimated by laser doppler velocimetry, were significantly lower than during the control exercise of 150 W. Rates of increase of (T ty) during the 100-W exercise were the same in both conditions; however, during the 150-W exercise with dilatated nostrils (T ty) increased at a rate significantly lower than during control [1.1 (0.3)°C·h–1 vs 1.5 (0.4)°C·h–1]. The change in the rate of increase of T ty between conditions was significantly correlated to the degree of nostril dilatation (r = –0.77, P = 0.02), suggesting that the lower (T ty) observed was due to nostril dilatation. Facial skin temperature was not significantly different between sessions. The results suggest that the nasal cavity may act as a heat exchanger in selective brain cooling of exercising humans.  相似文献   

6.
The present study was conducted to know the effects of different light intensities exposed during daytime for several hours on melatonin excreting rate in urine and tympanic temperature. Eleven healthy female subjects were exposed to bright light of 6000 lx (Bright) or dim light of 100 lx (Dim) during daytime from 09:00 h to 13:30 h, and then the light condition was kept at 100 lx until the end of test at 14:30 h. The urinary samples were collected from 10:00 h to 14:30 h every 1.5 hours, and melatonin excreting rate in urine was measured by enzyme immunoassay. Melatonin excreting rate in urine was significantly higher in Bright than in Dim at 11:30 h and 14:30 h, and not significant but at high level at 13:00 h (p &lt;0.07). Moreover, average tympanic temperatures were significantly lower in Bright than in Dim from 11:43 h to 14:30 h. These results showed that the bright light exposure during daytime could reduce tympanic temperature, which might result from the increase of melatonin level.  相似文献   

7.
The effects of bright light exposure during the daytime on circadian urinary melatonin and salivary immunoglobulin A (IgA) rhythms were investigated in an environmental chamber controlled at a global temperature of 27°C ± 0.2°C and a relative humidity of 60% ± 5%. Seven diurnally active healthy females were studied twice, in bright and dim light conditions. Bright light of 5000 lux was provided by placing fluorescent lamps about 1 meter in front of the subjects during the daytime exposure (06:30-19:30) from 06:30 on day 1 to 10:30 on day 3. Dim light was controlled at 200 lux, and the subjects were allowed to sleep from 22:30 to 06:30 under both light exposure conditions. Urine and saliva were collected at 4h intervals for assessing melatonin and IgA. Melatonin excretion in the urine was significantly greater during the nighttime (i.e., at 06:30 on day 1 and at 02:30 on day 2) after the bright light condition than during the dim light condition. Furthermore, the concentration and the amount of salivary IgA tended to be higher in the bright light than in the dim light condition, especially during the nighttime. Also, salivary IgA concentration and the total amount secreted in the saliva were significantly positively correlated with urinary melatonin. These results are consistent with the hypothesis that bright light exposure during the daytime enhances the nocturnal melatonin increase and activates the mucosal immune response.  相似文献   

8.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00-17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim-light condition: 17:00-02:00 h) or 2000 lux (evening bright-light condition: 17:00-02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim-light condition was significantly less than under the bright-light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

9.
We have examined the nonparallel changes in tampanic membrane temperatures (T ty) from the two ears in response to various changes in body and head positions. Upon assuming a lateral recumbent position, the T ty on the lower side increased while that on the upper side decreased. Pressure application over a wide area of the lateral chest only caused inconsistent and obscure asymmetric changes in T ty. A lateral flexion of the head with the subject sitting upright and a rotation of the head to the side in a supine position induced an increase in the T ty on the lower side compared to that on the upper side. The temperature and blood flow of the forehead often decreased on the lower side and increased on the upper side, although such responses were not always concomitant with the asymmetric changes in T ty. A dorsal flexion of the head with the subject in a reclining position caused a slight increase in the T ty, whereas raising the head upright induced a slight decrease in them. Two additional experiments were carried out with single photon emission computed tomography using 99mTc-hexamethylpropyleneamine oxime as tracer, and a slight, relative decrease in counts was noted in the right hemisphere during rotation of the head to the right. These results would strongly suggest that unilateral increases and decreases in T ty could have been caused by one-sided decreases and increases, respectively, in blood flow to the brain and/or the tympanic membrane, induced by a vasomotor reflex involving vestibular stimulation.  相似文献   

10.
The effects after exposure to two different light intensities (dim, 50 lx and bright, 5000 lx) on thermoregulatory responses during exercise in a climatic chamber (27 degrees C, 60% relative humidity) were studied in nine untrained female subjects, aged 19-22 years. The subjects were in either the dim or bright light intensities from 0600 hours to 1200 hours. They were then instructed to exercise on a cycle ergometer at an intensity of 60% maximal oxygen uptake from 1200 hours to 1300 hours in a light intensity of 500 Ix. The main results can be summarized as follows. Firstly, exercise-induced increases of core temperature were significantly smaller, after exposure to the bright than after the dim light intensities, although both tests were performed in the same light intensity. Secondly, body mass loss after exercise was significantly greater after exposure to the bright light intensity. Thirdly, an increase in salivary lactic acid during exercise was significantly lower after the bright intensity. Fourthly although the salivary melatonin level was not different between the two light intensities both before and after the exercise, it increased significantly during exercise only after the bright intensity. These results are discussed in terms of the establishment of a lower set-point in the core temperature after exposure to a bright light intensity.  相似文献   

11.
The purpose ofthis study was to investigate the utility of an infrared tympanicthermometry by using an optical fiber for measuring tympanictemperature (Tty). In the headcooling and facial fanning tests during normothermia, rightTty measured by this method(infrared-Tty) and esophagealtemperature (Tes) were notaffected by decreased temple and forehead skin temperatures, suggestingthat the infrared sensor in this system measured the infrared radiationfrom the tympanic membrane selectively. Eight male subjects took partin passive-heat-stress and progressive-exercise tests. No significantdifferences among infrared-Tty,the left Tty measured bythermistor (contact-Tty), andTes were observed at rest or atthe end of each experiment, and there was no significant difference inthe increase in these core temperatures from rest to theend. Furthermore, there were no significant differences inthe core temperature threshold at the onset of sweating and slope (therelationship of sweating rate vs.infrared-Tty and vs.contact-Tty). Theseresults suggest that this method makes it possible to measureTty accurately, continuously, andmore safely.

  相似文献   

12.
Summary Locomotor activity and feeding activity were measured together with circulating levels of melatonin in pigeons which were exposed to constant bright light (LLbright, 2000 lux) following light-dark (LD) cycles. Although all the pigeons showed daily rhythms of locomotor activity, feeding activity, and melatonin levels under LD cycles, they lost all the rhythms in prolonged LLbright. Acute exposure to bright light (2000 lux) during darkness reduced plasma melatonin levels. The half-time for the suppression in melatonin levels was about 30 min after short-term light exposure. These results support the hypothesis that melatonin may control the circadian rhythms of locomotor activity and feeding activity in the pigeon.Abbreviations LD light-dark - LLdim constant dim light - LLbright constant bright light - DD constant darkness - PX pinealectomy - EX blinding - RIA radioimmunoassay  相似文献   

13.
To examine whether cutaneous active vasodilatation is mediated by sudomotor nerve fibres we recorded cutaneous blood flow and sweat rates continuously with laser-Doppler flowmetry and capacitance hygrometry, respectively, from the dorsal and plantar aspects of the foot in 11 male subjects at varying ambient temperatures (T a) between 22 and 40°C (relative humidity 40%). In a warmer environment (T a 29–40°C), predominant responses of the blood flow curve from the sole of the foot were transient depressions (negative blood flow responses, NBR), whereas those from the dorsal foot were transient increases (positive blood flow responses, PBR). The PBR on the dorsal foot occurred spontaneously or in response to mental or sensory stimuli, and when PBR did not fuse with each other the rate of PBR was linearly related to tympanic temperature. When dorsal foot sweating was continuous, PBR on the dorsal foot almost entirely synchronized with sweat expulsion. When dorsal foot sweating was intermittent PBR sometimes occurred on the dorsal foot without corresponding sweat expulsions, but these PBR showed a complete correspondence with subthreshold sweat expulsion seen on a methacholine-treated area. The amplitude and the duration of PBR showed a significant linear relationship with the amplitude and the duration of the corresponding sweat expulsion. In a thermoneutral or cooler environment (T a 22–29°C), PBR occurred on the sole of the foot when mental or sensory stimuli elicited sweating in that area. Thus, PBR occurred when and where sweating appeared. Atropine failed to abolish PBR on the dorsal foot. Blockade of the peroneal nerve eliminated both PBR and NBR on the dorsal foot. The results indicate that an active vasodilatation mechanism is present on the sole of the foot as well as on the dorsal foot, and thus suggest that active vasodilatation is closely related to sudomotor nerve activation.  相似文献   

14.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

15.
It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered during the early biological night would phase delay the human circadian pacemaker. Twenty-one healthy young subjects underwent a 6.5-h light exposure session in one of three randomly assigned conditions: 1) continuous bright light of approximately 9,500 lux, 2) intermittent bright light (six 15-min bright light pulses of approximately 9,500 lux separated by 60 min of very dim light of <1 lux), and 3) continuous very dim light of <1 lux. Twenty subjects were included in the analysis. Core body temperature (CBT) and melatonin were used as phase markers of the circadian pacemaker. Phase delays of CBT and melatonin rhythms in response to intermittent bright light pulses were comparable to those measured after continuous bright light exposure, even though the total exposure to the intermittent bright light represented only 23% of the 6.5-h continuous exposure. These results demonstrate that a single sequence of intermittent bright light pulses can phase delay the human circadian pacemaker and show that intermittent pulses have a greater resetting efficacy on a per minute basis than does continuous exposure.  相似文献   

16.
The influence of the increased cerebral blood flow (CBF) induced by acetazolamide on tympanic temperature (T ty) was examined in three healthy male volunteers and in five patients with subacute subarachnoid haemorrhage (SAH). The CBF was estimated by means of stable xenon-enhanced computed tomography before and after the administration of acetazolamide. The T ty was recorded continuously in both ears using thermistor thermometers. In all subjects, CBF increased ranging from 11% to 108% after acetazolamide administration. In all the healthy subjects and in two patients with mild SAH, T ty was higher than the oesophageal temperature (T oes) and T ty decreased bilaterally, ranging from 0.07 to 0.35°C as CBF increased. Three patients with severe SAH were febrile, their T oes exceeding T ty, and their T ty rose by 0.30 to 0.53°C with increased CBF. These observations suggest that T ty follows brain temperature which changes with an increase in CBF in euthermic subjects as well as in febrile subjects. Accepted: 3 September 1996  相似文献   

17.
Euglena gracilis Klebs (Z) was grown axenically and autotrophically in four-liter serum bottles at 25°C on an aerated, continuously stirred, inorganic salt medium. Four fluorescent illumination regimes were employed: (1) continuous bright light of 3500 lux (LLb); (2) continuous dim light of 800 lux (LLd); (3) a LbD: 14, 10 (3500 lux) light-dark cycle; and (4) a LdD: 14, 10 (800 lux) light-dark cycle. Cell number was automatically monitored throughout all experiments. In LLb the generation time (G.T.) of the population was about 12 hours, whereas in LLd following LLb it was approximately five days; exponential growth occurred in either case. In LbD: 14, 10 synchronous growth occurred with a doubling of cell number every cycle of 24 hours. In LdD: 14, 10, however, although rhythmic cell division took place every 24 hours, the average increase in cell number during the division burst which occurred in each dark period was only 13.4%, so that the G.T. of the culture was about five days, as was the case for LLd. In the constant conditions of temperature and continuous dim light (LLd), following synchronous growth in LbD: 14, 10, small (17.0%) rhythmic division bursts lasting 14.5 hours continued to occur for at least ten days, with a period of 24.2 hours. The overall G.T. of the culture was about five days. These data demonstrating the circadian, endogenous nature of rhythmic cell division under certain conditions of continuous dim illumination were discussed in relation to the synchronous division observed in temperature and light-dark cycles.  相似文献   

18.
Core temperature (tympanic and rectal temperatures) is lowered for several hours under diurnal bright light exposure and its evening fall is inhibited under evening bright light exposure. Melatonin may be involved in the behavior of these core temperatures. Diurnal bright light exposure for several hours may make dressing behavior and thermal sensibility in the evening cold slower and dull, compared with diurnal dim light exposure. On the contrary, evening bright light exposure for several hours may make the dressing behavior and thermal sensibility in the evening cold quicker and sharper, compared with evening dim light exposure. The underlying physiological mechanisms for these findings are that the thermoregulatory set-point would be reduced more markedly in the evening under the influence of higher elevation of melatonin under the diurnal bright light exposure, and its evening decline would be inhibited by suppression of the nocturnal rise of melatonin under evening bright light exposure.  相似文献   

19.
We compared the accuracy of an ingestible telemetry pill method of core temperature (Tc) measurement and an infrared tympanic membrane thermometer to values from a rectal thermistor during exercise-induced heat stress. Ten well-trained subjects completed four exercise trials consisting of 40 min constant-load exercise at 63% of maximum work rate followed by a 16.1 km time trial at 30 °C and 70% relative humidity. Temperature at rest was not different between the three methods of Tc measurement (Tre: 37.2±0.3 °C; Tp: 37.2±0.2 °C; Tty: 37.1±0.3 °C; P=0.40P=0.40). Temperature rose continuously during the exercise period (ΔTre: 2.2±0.5 °C; ΔTp: 2.2±0.5 °C; ΔTty: 1.9±0.5 ±°C and there were no differences between Tre and Tp measurements at any time throughout exercise (P=0.32P=0.32). While there were no differences between Tre and Tty after 10 min (P=0.11P=0.11) and 20 min (P=0.06P=0.06) of exercise, Tty was lower than Tre after 30 min of exercise (P<0.01P<0.01) and remained significantly lower throughout the remainder of the exercise period. These results demonstrate that the telemetry pill system provides a valid measurement of trunk temperature during rest and exercise-induced thermal strain. Tty was significantly lower than Tre when temperature exceeded 37.5 °C. However, whether these differences are due to selective brain cooling or imperfections in the tympanic membrane thermometer methodology remains to be determined.  相似文献   

20.
Changes in body core temperature (T cor) and heat balance after an abrupt release of lower body negative pressure (LBNP) were investigated in 5 volunteers under the following conditions: (1) an ambient temperature (T a) of 20 °C or (2) 35 °C, and (3)T a of 25 °C with a leg skin temperature of 30°C or (4) 35°C. The leg skin temperature was controlled with water perfusion devices wound around the legs. Rectal (T re), tympanic (T ty) and esophageal (T es) temperatures, skin temperatures (7 sites) and oxygen consumption were measured. The intensity of LBNP was adjusted so that the amount of blood pooled in the legs was the same under all conditions. When a thermal balance was attained during LBNP, application of LBNP was suddenly halted. The skin temperatures increased significantly after the release of LBNP under all conditions, while oxygen consumption hardly changed. The release of LBNP caused significant falls inT cor s under conditions (1) and (3), but loweredT cor s very slightly under conditions (2) and (4). The changes inT es were always more rapid and greater than those ofT ty andT re. The falls inT ty andT re appeared to be explained by changes in heat balance, whereas the sharp drop ofT es could not be explained especially during the first 8 min after the release of LBNP. The results suggest that a fall inT cor after a release of LBNP is attributed to an increase in heat loss due to reflexive skin vasodilation and is dependent on the temperature of venous blood returning from the lower body. It is presumed thatT es may not be an appropriate indicator forT cor when venous return changes rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号