首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase β in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity.  相似文献   

2.
反胶团萃取是近年发展起来的分离和纯化生化物质的新方法,本文介绍了反胶团萃取蛋白质技术的原理和机制、影响反胶团中蛋白质稳定性的因素,改进的蛋白质反萃取工艺,反胶团的酶动力学研究以及反胶团萃取技术的研究展望。  相似文献   

3.
Chen WY  Lee YW  Lin SC  Ho CW 《Biotechnology progress》2002,18(6):1443-1446
This study extended works on effects of solute on the percolation of reverse micelles to the effects of interactions between protein and surfactants on protein refolding by reverse micelles. The changes in percolation behavior were identified and attributed to the position of solutes in the core aqueous phase and the interaction between the solute and the surfactants. The percolation behavior of reverse micelles with solutes was related to protein renaturation and the reverse micelle. This study aims to highlight the involvement of the interface and the interaction of the protein with the surfactant during protein refolding. Ribonuclease A and AOT reverse micelles together constitute a model system considered here. The systemic parameters of the reverse micelle, water content (W(o)) and pH value, were applied to modify the interaction between the denatured protein molecules and the surfactant interface. The interactions and the locations of the protein molecules were determined from changes in percolation temperature measured by conductivity. The percolation and protein activity show that a stronger interaction of the protein molecules with surfactant corresponds to superior recovery of protein activity. The investigation concludes that the refolding of protein by reverse micelles is not only facilitated by the isolation of reverse micelles but also by the interaction due to the interface of the reverse micelle.  相似文献   

4.
High pressure EPR studies of protein mobility in reversed micelles   总被引:1,自引:0,他引:1  
We have investigated the effect of pressure on structural properties of subtilisin solubilized in reversed micelles of Tween-85/isopropanol in hexane. Electron paramagnetic resonance (EPR) spectra of spin-labeled enzyme indicate a reduction in spin-label mobility when the enzyme is transferred from aqueous solution to the microemulsion. One explanation for the spectral broadening is a change in the protein's active-site conformation and/or dynamics. However, over a W(0) range of 80 to 180, EPR spectroscopy could detect no change in the enzyme's environment, conformation, or molecular dynamics. The EPR spectra also contained a contribution from free spin label located in an environment with a polarity roughly between that of propanol and bulk water. No changes in the polarity surrounding the free spin label nor in the enzyme's structural properties were evident at pressures up to 10,000 psi. Previous work has demonstrated that pressure can be used to manipulate the size of some reversed micelles, and the EPR data indicated that for this system such pressure tuning of micellar properties will not adversely affect the structure of solubilized enzyme. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The behavior of proteases in lecithin reverse micelles   总被引:1,自引:0,他引:1  
Reverse micelles, formed in isooctane/alcohol by phosphatidylcholines of variable chain length (i.e. 6, 7 or 8 C atoms in the fatty acid moiety) have been studied, mostly in relation to their capability of solubilizing trypsin and alpha-chymotrypsin. It has been found that the capability of the lecithin reverse micellar systems to solubilize water is strongly affected by the chain length of the alkyl group and by the alcohol used as co-surfactant. The C8-lecithin system, i.e. 1,2-dioctanoyl-sn-glycero-3-phosphocholine, in isooctane/hexanol is the system which affords the maximal solubilization of water (up to wo 60, where wo = [H2O]/[lecithin]) and of the enzymes. The water of the water pool of lecithin reverse micelles has been investigated by 1H-NMR; the proton chemical shift as a function of wo was found to be similar to the case of reverse micelles formed by the well known negatively charged surfactant sodium bis(2-ethylhexyl sulfosuccinate). 31P-NMR studies show that the ionization behavior of phosphate groups is similar to that in bulk water, suggesting no anomaly in the pH behavior of this water pool. The stability of trypsin and alpha-chymotrypsin in the various lecithin reverse micellar system is similar and occasionally better than that in aqueous solution. The same holds for the kinetic behavior (kcat and Km have been determined for a few systems). The bell-shaped curve of the pH/activity profile in lecithin reverse micelles is, for both enzymes, shifted towards more alkaline values with respect to water. Bell-shaped curves are also obtained when studying the influence of wo on the enzyme activity, with an optimal wo which is in the range 7-10, a surprisingly small value considering that we are dealing with hydrolases. Circular dichroic studies have been carried out in order to correlate the activity with the protein conformation: for both enzymes, generally no marked perturbations appear as a consequence of the solubilization in the lecithin reverse micelles, but conditions can be found under which significant alterations are present. Certain properties of the two enzymes, which in water solution are very similar, become sharply different in reverse micelles, showing that occasionally the micellization is able to enhance the relatively small structural differences between the two proteins.  相似文献   

6.
The research was aimed to establish the equilibrium processes in protein-containing systems of AOT reverse micelles in octane. As chromophore label for tracing the kinetics of the process, the acid-base indicator, p-nitrophenol, was used. The establishing of the equilibrium in the reverse micelle system notably decelerated in the presence of a solubilized protein (native and stearoylated alpha-chymotrypsin). During the establishing of the equilibrium, the solubilized enzyme can be irreversibly inactivated. The level of the residual activity of the enzyme in the equilibrium system depended on the procedure of micellar system preparation. The methods have been offered to set up the equilibrium in the reverse micelle system without inactivation of the solubilized enzyme.  相似文献   

7.
C Nicot  M Vacher  M Vincent  J Gallay  M Waks 《Biochemistry》1985,24(24):7024-7032
The solubility, reactivity, and conformational dynamics of myelin basic protein (MBP) from bovine brain were studied in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-isooctane and water. Such a membrane-mimetic system resembles the aqueous spaces of native myelin sheath in terms of physicochemical properties as reflected in the high affinity of MBP for interfacial bound water. This is marked by the unusual profile of the solubility curve of the protein in reverse micelles, which shows optimal solubility at a much lower molar ratio of water to surfactant ([ H2O]/[AOT] = w0) than that reported for other water-soluble proteins. The role of counterions and/or charged polar head groups in the solubilization process is revealed by comparison of the solubility of MBP in nonionic surfactant micellar solutions. Whereas MBP is unfolded in aqueous solutions, insertion into reverse micelles generates a more folded structure, characterized by the presence of 20% alpha-helix. This conformation is unaffected by variations in the water content of the system (in the 2.0-22.4 w0 range). The reactivity of epsilon-amino groups of lysine residues with aqueous solutions of o-phthalaldehyde demonstrates that segments of the peptide chain are accessible to water. Similar results were obtained with the sequence involved in heme binding. In contrast, the sole tryptophan residue, Trp-117, is shielded from the aqueous solvent, as indicated by lack of reaction with N-bromosuccinimide. The invariance of the wavelength maximum emission in the fluorescence spectra as a function of w0 is consistent with this result.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Structural transition can be induced in charged micelles by increasing the ionic strength of the medium. We have monitored the organization and dynamics of the functionally important tryptophan residues of gramicidin in spherical and rod-shaped sodium dodecyl sulfate micelles utilizing a combination of wavelength-selective fluorescence and related fluorescence approaches. Our results show that tryptophans in gramicidin, present in the single-stranded beta(6.3) conformation, experience slow solvent relaxation giving rise to red edge excitation shift in spherical and rod-shaped micelles. In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of these micelles. Fluorescence quenching experiments using acrylamide as a quencher of tryptophan fluorescence show that there is reduced water penetration in rod-shaped micelles. Taken together, we show that gramicidin conformation and dynamics is sensitive to the salt-induced structural transition in charged micelles. In addition, these results demonstrate that deformation of the host assembly could modulate protein conformation and dynamics.  相似文献   

9.
The conformational dynamics of domain III in annexin V bound to negatively charged phospholipid vesicles of 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine and 1-palmitoyl-2-oleoyl-sn-glycerophosphoserine or incorporated into reverse micelles of water/sodium bis(2-ethylhexyl) sulfosuccinate in isooctane, used to mimic the phospholipid/water interface, was studied by steady-state and time-resolved fluorescence of its single tryptophan residue (W187). Upon interaction with sonicated phospholipid vesicles in the presence of calcium, or upon incorporation into reverse micelles without calcium, a progressive 12-14 nm red shift of the fluorescence emission spectrum of W187 is observed. The indole environment becomes therefore more polar than in the unbound protein. Three major lifetime populations describe the fluorescence intensity decays of W187 in both systems. A long-lived excited-state population characterizes the membrane-bound state of the protein. The existence of local conformers with different subnanosecond mobility is suggested by specific association between lifetimes and correlation times both for the protein in buffer and in interaction with the membrane surface. The interaction of the protein with the membrane surface preserves the existence of a rapid unhindered rotational motion, which is coupled with all three lifetimes. The longest lifetime is coupled to restricted motions in subnanosecond and nanosecond time scales. The overall amplitude of rotation of the indole ring is increased in the membrane-bound conformation of the protein. In reverse micelles, the local dynamics reported by W187 is also considerably increased whereas the overall folding of the protein remains unaffected. The same conformational change of domain III can therefore be provoked by different conditions: calcium binding at high concentration, mild acidic pH [Sopkova, J., Vincent, M., Takahashi, M., Lewit-Bentley, A. , and Gallay, J. (1998) Biochemistry 37, 11962-11970] and the interaction of the protein with the membrane surface. The high flexibility of domain III in the membrane-bound protein suggests that this domain may not be crucial for the interaction of the protein with the membrane, in contrast with previous models. Our data are compatible with atomic force microscopy results which suggest that domain III of annexin V does not interact strongly with the membrane surface [Reviakine, I., Bergma-Schutter, W., and Brisson, A. (1998) J. Struct. Biol. 121, 356-361].  相似文献   

10.
The rate of hydrolysis of p-nitrophenyl acetate (PNPA) catalyzed by Mucor javanicus lipase has been measured in AOT reverse micellar solutions formulated in aliphatic hydrocarbons, aromatic hydrocarbons and a chlorinated compound. The study has been performed at a single value of W = ([water]/[AOT]) = 6.0. Fluorescence decay measurements of intrinsic enzyme fluorescence, mainly due to tryptophan residues, in the different reverse micellar systems were also carried out, in an attempt to obtain some insight on the effect of the organic solvent on the protein conformation. Differences observed in the kinetics of the fluorescence decays of tryptophan residues of the lipase incorporated to the micelles with the different external organic solvents were also found in the catalytic behaviour of the enzyme. In particular, it is observed that the contribution of the long lived component of the fluorescence decay is considerably higher (ca. 40%) in aliphatic than in aromatic solvents (ca. 15%), indicating significant differences in the protein conformation. This effect of the organic solvent on the protein conformation is also observed in the enzymatic activity, which is higher in the aromatic than in the aliphatic solvents.  相似文献   

11.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an alpha helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

12.
The interaction of AOT reverse micelles with Met-enkephalin, the pancreatic secretory trypsin inhibitor (PSTI) and the epidermal growth factor (EGF) is examined by NMR methods and the three systems are compared. While Met-enkephalin adopts a folded conformation, PSTI appears to become highly flexible, suggestive of a non-specific interaction with the micelles. On the other hand, the EGF spectrum shows that, although the main globular features of the protein are retained in the presence of AOT, the C-terminal fragment has to rearrange its conformation when put in contact with the micelle wall.  相似文献   

13.
Cutinase encapsulated in dioctyl sulfosuccinate reverse micelles displays very low stability, undergoing fast denaturation due to an anchoring at the micellar interface. The denaturation process and the structure of the reverse micelle were characterized using biophysical techniques. The kinetics of denaturation observed from fluorescence match the increase of the hydrodynamic radius of reverse micelles. Denaturation in reverse micelles is mainly the unfolding of the three-dimensional structure since the decrease in the circular dichroism ellipticity in the far-UV range is very small. The process is accompanied by an increase in the steady-state anisotropy, as opposed to what happens for denaturation in aqueous solution.Since 1-hexanol used as co-surfactant in dioctyl sulfosuccinate reverse micelles slows or even prevents cutinase denaturation, its effect on cutinase conformation and on the size of reverse micelles was analyzed. When 1-hexanol is present, cutinase is encapsulated in a large reverse micelle, as deduced from dynamic light scattering. The large reverse micelle filled with cutinase was built from the fusion of reverse micelles according to a pseudo-unimolecular process ranging in time from a few minutes to 2h depending on the reverse micellar concentration. This slow equilibrium driven by the encapsulated cutinase has not been reported previously. The encapsulation of cutinase in dioctyl sulfosuccinate reverse micelles establishes a completely new equilibrium characterized by a bimodal population of empty and filled reverse micelles, whose characteristics depend greatly on the interfacial characteristics, that is, on the absence or presence of 1-hexanol.  相似文献   

14.
M D Bruch  J Rizo  L M Gierasch 《Biopolymers》1992,32(12):1741-1754
In an effort to explore the influence of interfacial environments on reverse turns, we have performed a detailed analysis by nmr of the solution conformations of two cyclic pentapeptides in sodium dodecyl sulfate (SDS) micelles. The first peptide, cyclo (D-Phe1-Pro2-Gly3-D-Ala4-Pro5), adopts a single rigid conformation in solution (either chloroform or dimethylsulfoxide) and in crystals, whereas the second, cyclo (Gly1-Pro2-D-Phe3-Gly4-Val5), is much more flexible and adopts different conformations in the crystal and in solution. Both of these peptides are solubilized by SDS micelles, and nmr relaxation rates indicate that they are both partially immobilized by interaction with the micelles. Furthermore, some amide protons in both peptides participate in hydrogen bonds with water. In the presence of micelles, the former peptide retains a conformation essentially the same as that found in crystals and in solution, which consists of a beta turn and an inverse gamma turn. However, the micellar environment has a significant effect on the latter peptide. In particular, the population of a conformer containing a cis Gly-Pro peptide bond is increased significantly. The most likely conformation of the cis isomer, determined by a combination of nmr and restrained molecular dynamics, contains a Gly1-Pro2 delta turn and a gamma turn about D-Phe3. The nmr data on the trans isomer indicate that this isomer is averaging between two conformations that differ mainly in the orientation of the D-Phe3-Gly4 peptide bond.  相似文献   

15.
The present work deals with a theoretical model of catalysis by enzymes entrapped in reverse micelles. Three aspects of the enzyme-reverse-micelle system have been considered: structure, dynamics and enzyme distribution and catalysis in reverse micelles. A proposed structural model of reverse micelles [El Seoud (1984) in Reverse Micelles (Luisi, P. L. & Straub, B. E., eds.), p. 81, Plenum Press, New York] consists of three domains: surfactant apolar tails, bound water and free water. Dynamics are based on a dynamic equilibrium of association-dissociation that lead one to consider the dispersed polar phase as a pseudo-continuous phase [Luisi, Giomini, Pileni & Robinson (1988) Biochim. Biophys. Acta 947, 207-246]. Enzyme is distributed among the reverse-micelle domains and it expresses a catalytic constant for each one of them. The overall activity is calculated taking into account the volume in which enzyme is solubilized, and expressed as a function of the whole volume (V). The characteristic parameters of reverse micelles, omega 0 (= [H2O]/[surfactant]) and theta (= % water, v/v), were investigated as modulators of enzymic activity. Three basic patterns of modulation by omega 0 were found depending on which domain the enzyme expressed the highest catalytic constant. Combinations of those basic patterns lead to other modulation types that can be found experimentally, such as superactivation. Other combinations predict behaviour patterns not described to date, such as superinhibition. Dependence of catalytic activity on theta was only stated at omega 0 values around a critical value, which coincides with the appearance of free water.  相似文献   

16.
The partial specific volume and adiabatic compressibility of proteins reflect the hydration properties of the solvent-exposed protein surface, as well as changes in conformational states. Reverse micelles, or water-in-oil microemulsions, are protein-sized, optically-clear microassemblies in which hydration can be experimentally controlled. We explore, by densimetry and ultrasound velocimetry, three basic proteins: cytochrome c, lysozyme, and myelin basic protein in reverse micelles made of sodium bis (2-ethylhexyl) sulfosuccinate, water, and isooctane and in aqueous solvents. For comparison, we use beta-lactoglobulin (pI = 5.1) as a reference protein. We examine the partial specific volume and adiabatic compressibility of the proteins at increasing levels of micellar hydration. For the lowest water content compatible with complete solubilization, all proteins display their highest compressibility values, independent of their amino acid sequence and charge. These values lie within the range of empirical intrinsic protein compressibility estimates. In addition, we obtain volumetric data for the transition of myelin basic protein from its initially unfolded state in water free of denaturants, to a folded, compact conformation within the water-controlled microenvironment of reverse micelles. These results disclose yet another aspect of the protein structural properties observed in membrane-mimetic molecular assemblies.  相似文献   

17.
Membrane protein structural biology is a rapidly developing field with fundamental importance for elucidating key biological and biophysical processes including signal transduction, intercellular communication, and cellular transport. In addition to the intrinsic interest in this area of research, structural studies of membrane proteins have direct significance on the development of therapeutics that impact human health in diverse and important ways. In this article we demonstrate the potential of investigating the structure of membrane proteins using the reverse micelle forming surfactant dioctyl sulfosuccinate (AOT) in application to the prototypical model ion channel gramicidin A. Reverse micelles are surfactant based nanoparticles which have been employed to investigate fundamental physical properties of biomolecules. The results of this solution NMR based study indicate that the AOT reverse micelle system is capable of refolding and stabilizing relatively high concentrations of the native conformation of gramicidin A. Importantly, pulsed-field-gradient NMR diffusion and NOESY experiments reveal stable gramicidin A homodimer interactions that bridge reverse micelle particles. The spectroscopic benefit of reverse micelle-membrane protein solubilization is also explored, and significant enhancement over commonly used micelle based mimetic systems is demonstrated. These results establish the effectiveness of reverse micelle based studies of membrane proteins, and illustrate that membrane proteins solubilized by reverse micelles are compatible with high resolution solution NMR techniques. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The influence of ethylene glycol (EG) on the kinetics of hydrolysis of N-alpha-benzoyl-L-arginine ethyl ether catalyzed by trypsin encapsulated in sodium bis-(2-ethylhexyl)sulfosuccinate (AOT)-based reverse micelles was studied at different temperatures. Ethylene glycol was shown to shift the range of the trypsin activity in the reverse micelles towards higher temperatures. Infrared spectroscopy showed a stabilizing effect of EG on the secondary structure of the protein in the system of reverse micelles. Electron spin resonance spectroscopy showed that the solubilized protein affected the interactions of EG with the polar head groups of AOT and altered the rigidity of the micellar matrix. The results indicate that EG increases the thermostability of the solubilized enzyme in microemulsion media by two mechanisms.  相似文献   

19.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an α helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

20.
Evidence is presented that a compartmentalised protein exists in its native state only within a particular size of aqueous cavity. This behaviour is shown to exist in AOT reverse micelles using fluorescence quenching and circular dichroism (CD) studies of human serum albumin (HSA). In particular, far ultraviolet CD measurements show that a reduction in quencher accessibility to the fluorophore is consistent with the protein being nearest to its native conformation at a waterpool size of around 80 Å diameter. We also show that the biexponential fluorescence decay of N-acetyl-l-tryptophanamide (NATA) in AOT reverse micelles arises from the probe being located in two distinct sites within the interfacial region. The more viscous of these two sites is located on the waterpool side of the interface and the other is located on the oil side of the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号