首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rats were studied for [(59)Fe-(125)I]transferrin uptake in total brain, and fractions containing brain capillary endothelial cells (BCECs) or neurons and glia. (59)Fe was transported through BCECs, whereas evidence of similar transport of transferrin was questionable. Intravenously injected transferrin localized to BCECs and failed to accumulate within neurons, except near the ventricles. No significant difference in [(125)I]transferrin distribution was observed between Belgrade b/b rats with a mutation in divalent metal transporter I (DMT1), and Belgrade +/b rats with regard to accumulation in vascular and postvascular compartments. (59)Fe occurred in significantly lower amounts in the postvascular compartment in Belgrade b/b rats, indicating impaired iron uptake by transferrin receptor and DMT1-expressing neurons. Immunoprecipitation with transferrin antibodies on brains from Belgrade rats revealed lower uptake of transferrin-bound (59)Fe. In postnatal (P)0 rats, less (59)Fe was transported into the postvascular compartment than at later ages, suggesting that BCECs accumulate iron at P0. Supporting this notion, an in situ perfusion technique revealed that BCECs accumulated ferrous and ferric iron only at P0. However, BCECs at P0 together with those of older age lacked DMT1. In conclusion, BCECs probably mediate iron transport into the brain by segregating iron from transferrin without involvement of DMT1.  相似文献   

2.
Brain iron transport and distributional pattern of divalent metal transporter I (DMT1) were studied in homozygous Belgrade rats (b/b) which suffer from a mutation in the DMT1 gene. In adult rats, brain uptake of transferrin-bound iron injected intravenously (i.v.) was significantly lower compared with that in heterozygous Belgrade (+/b) and Wistar rats, whereas transferrin uptake was identical. The difference in iron uptake was not apparent until 30 min after injection. The brain iron concentration was lower, and neuronal transferrin receptor-immunoreactivity higher, in adult b/b rats, thus confirming their iron-deficient stage. Antibodies targeting different sites on the DMT1 molecule consistently detected DMT1 in neurones and choroid plexus at the same level irrespective of strain, but failed to detect DMT1 in brain capillary endothelial cells (BCECs), or macro- or microglial cells. The absence of DMT1 in BCECs was confirmed in immunoblots of purified BCECs. DMT1 was virtually undetectable in neurones of rats aged 18 post-natal days irrespective of strain. Neuronal expression of transferrin receptors and DMT1 in adult rats implies that neurones at this age acquire iron by receptor-mediated endocytosis of transferrin followed by iron transport out of endosomes mediated by DMT1. The existence of the mutated DMT1 molecule in neurones suggests that the low cerebral iron uptake in b/b rats derives from a reduced neuronal uptake rather than an impaired iron transport through the blood-brain barrier.  相似文献   

3.
Transferrin and Transferrin Receptor Function in Brain Barrier Systems   总被引:15,自引:0,他引:15  
1. Iron (Fe) is an essential component of virtually all types of cells and organisms. In plasma and interstitial fluids, Fe is carried by transferrin. Iron-containing transferrin has a high affinity for the transferrin receptor, which is present on all cells with a requirement for Fe. The degree of expression of transferrin receptors on most types of cells is determined by the level of Fe supply and their rate of proliferation.2. The brain, like other organs, requires Fe for metabolic processes and suffers from disturbed function when a Fe deficiency or excess occurs. Hence, the transport of Fe across brain barrier systems must be regulated. The interaction between transferrin and transferrin receptor appears to serve this function in the blood–brain, blood–CSF, and cellular–plasmalemma barriers. Transferrin is present in blood plasma and brain extracellular fluids, and the transferrin receptor is present on brain capillary endothelial cells, choroid plexus epithelial cells, neurons, and probably also glial cells.3. The rate of Fe transport from plasma to brain is developmentally regulated, peaking in the first few weeks of postnatal life in the rat, after which it decreases rapidly to low values. Two mechanisms for Fe transport across the blood–brain barrier have been proposed. One is that the Fe–transferrin complex is transported intact across the capillary wall by receptor-mediated transcytosis. In the second, Fe transport is the result of receptor-mediated endocytosis of Fe–transferrin by capillary endothelial cells, followed by release of Fe from transferrin within the cell, recycling of transferrin to the blood, and transport of Fe into the brain. Current evidence indicates that although some transcytosis of transferrin does occur, the amount is quantitatively insufficient to account for the rate of Fe transport, and the majority of Fe transport probably occurs by the second of the above mechanisms.4. An additional route of Fe and transferrin transport from the blood to the brain is via the blood–CSF barrier and from the CSF into the brain. Iron-containing transferrin is transported through the blood–CSF barrier by a mechanism that appears to be regulated by developmental stage and iron status. The transfer of transferrin from blood to CSF is higher than that of albumin, which may be due to the presence of transferrin receptors on choroid plexus epithelial cells so that transferrin can be transported across the cells by a receptor-mediated process as well as by nonselective mechanisms.5. Transferrin receptors have been detected in neurons in vivo and in cultured glial cells. Transferrin is present in the brain interstitial fluid, and it is generally assumed that Fe which transverses the blood–brain barrier is rapidly bound by brain transferrin and can then be taken up by receptor-mediated endocytosis in brain cells. The uptake of transferrin-bound Fe by neurons and glial cells is probably regulated by the number of transferrin receptors present on cells, which changes during development and in conditions with an altered iron status.6. This review focuses on the information available on the functions of transferrin and transferrin receptor with respect to Fe transport across the blood–brain and blood–CSF barriers and the cell membranes of neurons and glial cells.  相似文献   

4.
Transport of Iron in the Blood-Brain-Cerebrospinal Fluid System   总被引:10,自引:3,他引:7  
Abstract: Iron is an important constituent in brain and, in certain regions, e.g., the basal nuclei, reaches concentrations equivalent to those in liver. It has a role in electron transfer and is a cofactor for certain enzymes, including those involved in catecholamine and myelin synthesis. Iron in CSF is likely to be representative of that in interstitial fluid of brain. Transferrin in CSF is fully saturated, and the excess iron may be loosely bound as Fe(II). Brain iron is regulated in iron depletion, suggesting a role for the blood-brain barrier (BBB). Iron crosses the luminal membrane of the capillary endothelium by receptor-mediated endocytosis of ferric transferrin. This results in an initial linear uptake of radioactive iron into brain at an average rate relative to serum of about 3.3 × 10?3 ml·g of brain?1·h?1 in the adult rat. This corresponds to about 80 nmol·kg?1·h?1. Much higher rates occur in the postnatal rat. These increase during the first 15 days of life and decline thereafter. Within the endothelium, most of the iron is separated from transferrin, presumably by the general mechanism of acidification within the endosome. Iron appears to be absorbed from the vesicular system into cytoplasm and transported across the abluminal plasma membrane into interstitial fluid as one or more species of low molecular weight. There is some evidence that ionic Fe(II) is involved. Certainly Fe(II) ions presented on the luminal side rapidly cross the complete BBB, i.e., luminal and abluminal membranes. Within interstitial fluid, transported iron will bind with any unsaturated transferrin synthesized or transported into the brain-CSF system. Oligodendrocytes are one site of synthesis. From interstitial fluid, ferric transferrin is taken up by neurones and glial cells by the usual receptor-mediated endocytosis. Calculations of the amount of iron leaving the system with the bulk flow of CSF indicate that most iron entering brain across the capillary endothelium finally leaves the system with the bulk outflow of CSF through arachnoid villi and other channels. A system in which influx of iron into brain is by regulated receptor-mediated transport and in which efflux is by bulk flow is ideal for homeostasis of brain iron.  相似文献   

5.
Transferrin and iron uptake by rat reticulocytes   总被引:1,自引:0,他引:1  
The uptake of transferrin labeled with 3H and 59Fe by rat reticulocytes was studied to clarify the characteristics of the uptake process and intracellular transport. Rat reticulocytes took up transferrin in a saturable, time- and temperature-dependent manner. Scatchard analysis of the binding parameters indicated that transferrin molecules were bound to cell-surface receptors with high affinity. Monodansyl- cadaverine, a potent inhibitor of transglutaminase, reduced the amount of internalized transferrin but has no effect on the total amount of cell-associated transferrin, suggesting that transferrin is taken up by rat reticulocytes via receptor-mediated endocytosis. About 50% of the internalized 3H label was released from the cells after reincubation for 1 h in fresh medium. In contrast, no release of 59Fe label was observed. By immunoprecipitation and subsequent SDS-PAGE the released 3H-labeled product was identified as apotransferrin. Lysosomotropic reagents and a proton ionophore reduced the uptake of 59Fe. These results indicated that iron was removed from transferrin at an intracellular site in an acidic environment. The released iron was found not to associate with any intermediate ligands before it was utilized for heme synthesis in mitochondria.  相似文献   

6.
7.
To investigate the regulation mechanism of the uptake of iron and heme iron by the cells and intracellular utilization of iron, we examined the interaction between iron uptake from transferrin and hemopexin-mediated uptake of heme by human leukemic U937 cells or HeLa cells. U937 cells exhibited about 40,000 hemopexin receptors/cell with a dissociation constant (Kd) of 1 nM. Heme bound in hemopexin was taken up by U937 cells or HeLa cells in a receptor-mediated manner. Treatment of both species of cells with hemopexin led to a rapid decrease in iron uptake from transferrin in a hemopexin dose-dependent manner, and the decrease seen in case of treatment with hemin was less than that seen with hemopexin. The decrease of iron uptake by hemopexin contributed to a decrease in cell surface transferrin receptors on hemopexin-treated cells. Immunoblot analysis of the transferrin receptors revealed that the cellular level of receptors in U937 cells did not vary during an 8-h incubation with hemopexin although the number of surface receptors as well as iron uptake decreased within the 2-h incubation. After 4 h of incubation of the cells with hemopexin, a decrease of the synthesis of the receptors occurred. Thus, the down-regulation of transferrin receptors by hemopexin can be attributed to at least two mechanisms. One is a rapid redistribution of the surface receptor into the interior of the cells, and the other is a decrease in the biosynthesis of the receptor. 59Fe from the internalized heme rapidly appeared in non-heme iron (ferritin) coincidently with the induction of heme oxygenase. The results suggest that iron released from heme down-regulates the expression of the transferrin receptors and iron uptake.  相似文献   

8.
Anti-transferrin receptor IgG2a (OX26) transport into the brain was studied in rats. Uptake of OX26 in brain capillary endothelial cells (BCECs) was > 10-fold higher than isotypic, non-immune IgG2a (Ni-IgG2a) when expressed as % ID/g. Accumulation of OX26 in the brain was higher in 15 postnatal (P)-day-old rats than in P0 and adult (P70) rats. Iron-deficiency did not increase OX26 uptake in P15 rats. Three attempts were made to investigate transport from BCECs further into the brain. (i) Using a brain capillary depletion technique, 6-9% of OX26 was identified in the post-capillary compartment consisting of brain parenchyma minus BCECs. (ii) In cisternal CSF, the volume of distribution of OX26 was higher than for Ni-IgG2a when corrected for plasma concentration. (iii) Immunohistochemical mapping revealed the presence of OX26 almost exclusively in BCECs; extravascular staining was observed only in neurons situated periventricularly. The data support the hypothesis of facilitated uptake of OX26 due to the presence of transferrin receptors at the blood-brain barrier (BBB). However, OX26 accumulation in the post-capillary compartment was too small to justify a conclusion of receptor-mediated transcytosis of OX26 occurring in BCECs. Accumulation of OX26 in the post-capillary component may result from a diphasic transport that involves high-affinity accumulation of OX26 by the BCECs, clearly exceeding that of Ni-IgG2a, followed by a second transport mechanism that releases OX26 non-specifically further into the brain. The periventricular localization suggests that OX26 probably also derives from transport across the blood-CSF barrier.  相似文献   

9.
Retinal pigment epithelial cells, which form one aspect of the blood-retinal barrier, take up iron in association with transferrin by a typical receptor-mediated mechanism (Hunt et al., 1989. J. Cell Sci. 92:655-666). This iron is dissociated from transferrin in a low pH environment and uptake is sensitive to agents that inhibit endosomal acidification. The dissociated iron enters the cytoplasm as a low molecular weight (less than 10 kD) component and subsequently binds to ferritin. No evidence for recycling of iron in association with transferrin was found. Nevertheless, much of the iron that is taken up is recycled to the extracellular medium, primarily from the low molecular weight pool. This release of iron is not sensitive to inhibitors of energy production or of vesicular acidification but is increased up to a maximum of about 40% of the total 55Fe incorporated when cells are incubated with serum or the medium is changed. When a short loading time for 55Fe from 55Fe-transferrin is used (i.e., when the low molecular weight pool is proportionately larger), a much larger fraction of the cell-associated radiolabel is released than when longer loading times are used. The data suggest that a releasable intracellular iron pool is in equilibrium with the externalized material. The released iron may be separated into a high and a low molecular weight component. The former is similar on polyacrylamide gel electrophoresis to ferritin although it cannot be immune precipitated by anti-ferritin antibodies. The low molecular weight 55Fe which is heterogeneous in nature can be bound by external apo-transferrin and may represent a form that can be taken up by cells beyond the blood-retinal barrier.  相似文献   

10.
The lipophilic carboxylic ionophores monensin and nigerisin reversibly blocked iron uptake by erythroid cells. At low concentrations of ionophores (0.25-0.5 microM), the disruption of the compartment in which iron is released affected minimally the release of iron from transferrin but effectively inhibited iron uptake. Iron released from transferrin was extruded from the cell synchronously with but not bound to transferrin. The compartment disrupted by the ionophores, and in which iron is released from transferrin, is apparently contiguous to the extracellular medium. Contiguity was assessed by determining the effect of extracellular Na+ and K+ on the activity of the ionophores. The above data fit a model of iron uptake in which iron is released from transferrin in an acidic compartment in immediate contiguity with the cell plasma membrane. Iron is then bound by its membrane acceptor and is translocated to the cytosolic side of the plasma membrane. At submicromolar concentrations, the ionophores monensin and nigerisin produce a small increase in the pH of the acidic compartment. The pH change, which is not sufficient to block the release of iron from transferrin, is enough to block the binding of released iron to its acceptor in the plasma membrane, thus producing inhibition of iron uptake.  相似文献   

11.
Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.  相似文献   

12.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the ferritin level 2-4- or 6-8-fold above that of the control, respectively. Treatment with the anti-human transferrin receptor antibody, OKT9 (which reduces the iron uptake by decreasing the number of transferrin receptors) lowers the ferritin level by approximately 70-80% with respect to the control. The fraction of total cell-associated 59Fe (given as a pulse via transferrin) that becomes ferritin bound is proportional to the actual ferritin level and is independent of the instantaneous amount of iron taken up. This has allowed us to establish a curve that correlates different levels of intracellular ferritin with corresponding percentages of incoming iron delivered to ferritin. Iron released from transferrin appears to distribute to ferritin according to a partition function; the entering load going into ferritin is set for a given ferritin level over a wide range of actual amounts of iron delivered.  相似文献   

13.
Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a gamma-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the gamma-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B(o)+) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions.  相似文献   

14.
The anatomical and cellular distribution of non-haem iron, ferritin, transferrin, and the transferrin receptor have been studied in postmortem human brain and these studies, together with data on the uptake and transport of labeled iron, by the rat brain, have been used to elucidate the role of iron and other metal ions in certain neurological disorders. High levels of non-haem iron, mainly in the form of ferritin, are found in the extrapyramidal system, associated predominantly with glial cells. In contrast to non-haem iron, the density of transferrin receptors is highest in cortical and brainstem structures and appears to relate to the iron requirement of neurones for mitochondrial respiratory activity. Transferrin is synthesized within the brain by oligodendrocytes and the choroid plexus, and is present in neurones, consistent with receptor mediated uptake. The uptake of iron into the brain appears to be by a two-stage process involving initial deposition of iron in the brain capillary endothelium by serum transferrin, and subsequent transfer of iron to brain-derived transferrin and transport within the brain to sites with a high transferrin receptor density. A second, as yet unidentified mechanism, may be involved in the transfer of iron from neurones possessing transferrin receptors to sites of storage in glial cells in the extrapyramidal system. The distribution of iron and the transferrin receptor may be of relevance to iron-induced free radical formation and selective neuronal vulnerability in neurodegenerative disorders.  相似文献   

15.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

16.
We have previously shown that in the liver, transferrin (TF) receptors are limited to endothelial cells, and hepatocytes and Kupffer cells do not have TF receptors. To study the transport of iron into hepatocytes, we fractionated liver cell suspensions into endothelium and hepatocyte fractions. At 4 degrees C liver (but not umbilical cord) endothelium bound Fe-TF with a saturable kinetics. At 37 degrees C, the endothelial uptake was followed by its gradual release. Transendothelial transport of TF was visually demonstrated by perfusion of liver using colloidal gold-labeled TF. The released Fe-TF acquired the potential for binding to fresh target hepatocytes and binding was not inhibited by excess cold TF but was inhibitable by asialofetuin, suggesting galactosyl receptors and not TF receptors as a recognition mechanism. Isoelectrofocusing of the supernate after preincubation for 90 min at 37 degrees C with endothelial cells, demonstrated the presence of a newly generated band which co-migrated with asialotransferrin. We conclude that Fe-TF is initially removed by liver endothelium where it is modified probably by desialation to expose the galactosyl residues of the glycoproteins. The modified molecule is subsequently released and recognized by hepatocytes through a TF receptor-independent mechanism which may involve galactosyl receptors of hepatocytes. The findings indicate a key role for endothelium in the transport of Fe-TF into the liver and may suggest a physiological function for galactosyl receptors on hepatocyte surface.  相似文献   

17.
The initial process of transfer of extracellular iron to the haem-synthesizing mitochondria of immature erythroid cells is the association of iron-transferrin with the cell membrane. When rat bone marrow cells were incubated in the presence of iron bound to rat transferrin, iron uptake was higher than in the presence of iron bound to heterologous transferrin. The relative activities of the various isolated transferrins towards rat transferrin were found to be approximately 0.3, 0.8, 0.1 and 0.04 for rabbit, human, bovine and fish (tench, Tinca tinca) transferrin, respectively, and 0.7, 0.7 and 0.15 for mouse, guinea pig and calf serum, respectively, as compared with rat serum. Although great difference exist in cellular uptake of iron bound to different species of transferrin, the subcellular distribution of 59Fe was quite similar. In all cases about 60% of the radioactivity taken up by the cells could be recovered in the haemin fraction and only about 15% in each the membrane and the non-haem soluble cell fraction. Similar results were obtained with guinea pig bone marrow cells.From the results of the experiments presented it might be concluded that the species of transferrin plays an important role during the initial stages of iron uptake by bone marrow cells, whereas the intracellular iron transfer process is not influenced by the species of transferrin.  相似文献   

18.
Growing human choriocarcinoma BeWo b24 cells contain 1.5 X 10(6) functional cell surface transferrin binding sites and 2.0 X 10(6) intracellular binding sites. These cells rapidly accumulate iron at a rate of 360,000 iron atoms/min/cell. During iron uptake the transferrin and its receptor recycle at least each 19 min. The accumulated iron is released from the BeWo cells at a considerable rate. The time required to release 50% of previously accumulated iron into the extracellular medium is 30 h. This release process is cell line-specific as HeLa cells release very little if any iron. The release of iron by BeWo cells is stimulated by exogenous chelators such as apotransferrin, diethylenetriaminepenta-acetic acid, desferral, and apolactoferrin. The time required to release 50% of the previously accumulated iron into medium supplemented with chelator is 15 h. In the absence of added chelators iron is released as a low molecular weight complex, whereas in the presence of chelator the iron is found complexed to the chelator. Uptake of iron is inhibited by 250 microM primaquine or 2.5 microM monensin. However, the release of iron is not inhibited by these drugs. Intracellular iron is stored bound to ferritin. A model for the release of iron by BeWo cells and its implication for transplacental iron transport is discussed.  相似文献   

19.
This paper describes a method for the culture of rat placental cells. The method involved separation of the basal layer from the labyrinth and sequential digestion of the cells. The cells were demonstrated not to be fibroblasts and are described in terms of their appearance under the light and electron microscopes. Transferrin and iron uptake by the cells was examined and compared with results achieved using other methods of study. The results showed that transferrin bound to receptors on the cell surface and that the transferrin, once bound, was taken into the cell. Only this internalized transferrin was capable of donating iron to the cells. The iron was accumulated within the cells and did not appear to be released to the incubation medium. The apparent dissociation constant (Ka) for transferrin was found to be 6.96 X 10(6) M-1, a value similar to that described by earlier workers. The placental cells had 3.4 X 10(11) binding sites/microgram DNA, equivalent to approximately 1 X 10(6) sites/cell. From these data, and from the rate of accumulation of iron by the cells, the receptor turnover time was estimated as being between 5 and 10 min.  相似文献   

20.
Uptake and Distribution of Iron and Transferrin in the Adult Rat Brain   总被引:4,自引:0,他引:4  
Brain uptake of iron-59 and iodine-125-labelled transferrin from blood in the adult rat has been investigated using graphical analysis to determine the blood-brain barrier permeability to these tracers in experiments that lasted between 5 min and 8 days. The blood-brain barrier permeability (K(in)) to 59Fe was 89 x 10(-5) ml/min/g compared to the value of 7 x 10(-5) ml/min/g for 125I-transferrin, which is similar to that of albumin, a plasma marker. The autoradiographic distribution of these tracers in brain was also studied to determine any regional variation in brain uptake after the tracers had been administered either systemically or applied in vitro. No regional uptake was seen for 125I-transferrin even after 24 h of circulation. In contrast, 59Fe showed selective regional uptake by the choroid plexus and extra-blood-brain barrier structures 4 h after administration. After 24 h of circulation, 59Fe distribution in brain was similar to the transferrin receptor distribution, as determined in vitro, but was unlike the distribution of nonhaem iron determined histochemically. The data suggest that brain iron uptake does not involve any significant transcytotic pathway of transferrin-bound iron into brain. It is proposed that the uptake of iron into brain involves the entry of iron-loaded transferrin to the cerebral capillaries, deposition of iron within the endothelial cells, followed by recycling of apotransferrin to the circulation. The deposited iron is then delivered to brain-derived transferrin for extracellular transport within the brain, and subsequently taken up via transferrin receptors on neurones and glia for usage or storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号