首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Outgrowth of B. subtilis spores depends on the action of DNA gyrase (comp. Matsuda and Kameyama 1980). Application of nalidixic acid (100 micrograms/ml) to dormant spores of Bacillus subtilis prevents the outgrowth. Application of nalidixic acid (100 micrograms/ml) during the early outgrowth phase (after a 20 min germination period) does not prevent, but only delay spore outgrowth. Germination of spores is not influenced. Nalidixic acid is an effective inhibitor of RNA synthesis in outgrowing spores, whereas vegetative cells are more resistant. Spores can grow out inspite of a remarkably reduced intensity of RNA synthesis. Nalidixic acid particularly inhibits the synthesis of stable RNA, probably that of ribosomal RNA. We suggest that DNA gyrase-catalyzed alterations in DNA structure are involved in the regulation of the gene expressional program of outgrowing B. subtilis spores.  相似文献   

2.
3.
During the first 6 hr of sporulation, infection of Bacillus subtilis by by phi105 wild type or the clear-plaque mutant phi105 c30 was nonproductive, but phage DNA was trapped inside developing spores. After infection with either wild-type or mutant phage at early times of sporulation (T1-T3), phage DNA entered the developing spores in a heat-stable form, which may represent integration of the phage DNA into the host chromosome. Phage DNA in carrier spores produced by infection at later times (T4-T6) was much more heat sensitive. Spore preparations containing either phi105 wild type or phi105 c30 carrier spores gave rise to a spontaneous burst of phage during outgrowth, although the fraction of carried wild-type phage that chose lysis over lysogeny at germination has not been determined. Heat induction of the thermoinducible lysogen 3610 (phi105 cts23) was also abortive during sporulation. Furthermore, induction neither prevented eventual spore formation nor resulted in the conversion of prophage DNA to the carrier state; during outgrowth, the previously induced lysogenic spores remained stable lysogens. However, if the sporulating lysogenic cells were plated immediately after induction, they did not form colonies at high efficiency, as though transfer to fresh medium allowed sufficient phage expression to kill the host.  相似文献   

4.
Spores of the fission yeast Schizosaccharomyces pombe have been separated from vegetative cells by a simple and rapid centrifugation (800 g for 20 min) through a 35% Hypaque solution to a purity greater than 95%. Approximately 35% of the spores were recovered. Regrowth in EMM2 plus glucose showed that over 97% of the spores germinated within the first 2 h and outgrowth continued between 5 and 10 h. Sucrose induced germination in greater than 95% of the spores with a 1 h delay and outgrowth in 50% of the spores with a 3 h delay. There was little protein synthesis during germination but the protein content increased linearly coincident with outgrowth. The RNA content increased slightly during germination, but increased linearly 1 h before the onset of outgrowth and protein synthesis. After 8 h of regrowth, coincident with the onset of DNA synthesis, the rate of RNA synthesis was accelerated. The DNA content had increased 1.7-fold after 10 h of regrowth from a haploid level of 1.36 x 10(-8) microgram spore-1.  相似文献   

5.
The outgrowth of spores of Bacillus subtilis 168 proceeded normally in temperature-sensitive DNA mutants under restrictive conditions and in the absence of DNA synthesis. Two inhibitors of DNA synthesis, nalidoxic acid and 6-(p-hydroxyphenylazo)-uracil, inhibited spore outgrowth under some nutritional conditions; this inhibition of outgrowth however, though not that of DNA synthesis, could be reversed by glucose. The sensitivity of the outgrowing spores to nalidixic acid and 6-(p-hydroxyphenylazo)-uracil inhbition decreased as a function of outgrowth time. The cells became completely resistant to the inhibitors after 90 min. The development of this resistance occurred also in the absence of DNA synthesis. It was concluded that DNA synthesis is not needed for spore outgrowth, and that outgrowing cells and vegetative cells differ in their sensitivity to these inhibitors.  相似文献   

6.
Spores of a Bacillus subtilis mutant temperature sensitive in deoxyribonucleic acid (DNA) replication proceeded through outgrowth at the nonpermissive temperature to the same extent as the wild-type parent spores. In contrast, the DNA synthesis inhibitor novobiocin completely prevented spore outgrowth while displaying a marginal effect on logarithmic growth during one generation time. Inhibition of outgrowth by novobiocin occurred in the absence of DNA replication, as demonstrated in an experiment with spores of the temperature-sensitive DNA synthesis mutant at the restrictive temperature. Novobiocin inhibited the initial rate of ribonucleic acid synthesis to the same extent in germinated spores and in exponentially growing cells. A novobiocin-resistant mutant underwent normal outgrowth in the presence of novobiocin. Therefore, novobiocin inhibition was independent of its effect on chromosome replication per se.  相似文献   

7.
8.
Deoxyribonucleic acid (DNA) synthesis during early outgrowth of spores of Bacillus cereus T (thy(-)) has been examined. (14)C-thymidine incorporated begins 2 to 5 min after germination and continues at a slow rate up to 30 min, after which the rate of (14)C-thymidine incorporation increases considerably. Early DNA synthesis up to 30 min after germination is dependent upon simultaneous protein synthesis. The examination of the stability of proteins synthesized soon after germination shows that they are susceptible to intracellular degradation. The evidence provided here indicates that protein degradation is the cause of observed dependence of DNA synthesis on simultaneous protein synthesis. The DNA synthesis occurring soon after germination is primarily a repair type synthesis which is followed by the onset of normal replication approximately 30 min after germination.  相似文献   

9.
10.
The phenolic compounds extracted from olives with ethyl acetate inhibited germination and outgrowth of Bacillus cereus T spores. Purified oleuropein, a well-characterized component of olive extract, inhibited these processes also. The addition of oleuropein and olive extracts 3 or 5 min after germination began, immediately decreased the rate of change of phase bright to phase dark spores and delayed significantly outgrowth.  相似文献   

11.
Streptomycin and infection of Escherichia coli by T6r+ bacteriophage   总被引:4,自引:1,他引:3  
Freda, Celia E. (University of Pennsylvania School of Medicine, Philadelphia), and Seymour S. Cohen. Streptomycin and infection of Escherichia coli by T6r(+) bacteriophage. J. Bacteriol. 92:1670-1679. 1966.-The thymineless, histidineless, uracil-less Escherichia coli 15 THU was shown to be sensitive to streptomycin, dying in patterns comparable to that of strain 15 TAU in the presence or absence of the required amino acid histidine. In the absence of histidine, the antibiotic stimulated ribonucleic acid (RNA) synthesis without a detectable inhibition or stimulation of deoxyribonucleic acid (DNA) synthesis. In the presence of streptomycin (40mug/ml) under conditions of multiple infection with T6r(+), lysis of THU occurred 1 hr earlier than did the control, having produced about one-third as much DNA and phage as did the control. In the absence of histidine, thereby preventing synthesis of phage DNA, accumulation of virus-induced RNA was similar for about 30 min in control and streptomycin-treated systems. In the presence of the antibiotic, however, the infected cells accumulated about 50 to 70% more RNA than did the control after 90 min. Nevertheless, the turnover of RNA was not detectably affected by streptomycin. The rate of production and final amount of deoxycytidylate hydroxymethylase, as well as the cut off time of synthesis of this enzyme, were scarcely affected by streptomycin. The beginning of DNA synthesis was delayed about 3 to 4 min by the antibiotic. The incorporation of histidine in infected cells was unaffected for 10 min and was only about 10% less than the control at 70 min. Lysozyme production began at about 10 min in control and antibiotic-treated systems, continued at essentially similarly increasing rates for 20 min, but stopped abruptly in the streptomycin-treated cells despite continuing protein synthesis. With the exception of lysozyme, the production of phage-specific polymers in a streptomycin-sensitive bacterium was only slightly affected by the antibiotic.  相似文献   

12.
Bacillus subtilis W23 was infected with a clear-plaque variant of SP-10 phage, namely, SP-10c. Exogenous thymidine was not incorporated into phage DNA (even in the presence of deoxyadenosine), nor was there any transfer of thymidine nucleotides from bacterial to viral DNA. The lytic program was unaffected by concentrations of 5-fluorodeoxyuridine sufficient to reduce bacterial DNA synthesis by greater than 95%. Although these data are consistent with the interpretation that thymidine nucleotides are excluded from phage DNA, formic acid digests of SP-10c DNA contained what appeared to be the four conventional bases; however, adenine and thymine were not recovered in equimolar yields. DNA-RNA hybridization and hybridization competition experiments were done. Synthesis of host RNA started to wane moments postinfection and stopped completely by 36 min. SP-10c coded for discrete classes of early and late RNA. The possibility of discrete subclasses of early RNA exists. Replication of the bacterial genome appeared to terminate 12 min postinfection. Degradation of the host DNA to acid-soluble material started at 36 min and, by the end of the latent period, greater than 90% of the host chromosome was hydrolyzed. Four apparent phage-coded enzymes have been identified. A di- and triphosphatase degraded dUTP, dUDP, dTTP, and dTDP (and, to a lesser extent, dCDP and d CTP) to the corresponding monophosphates; the enzyme had no apparent activity on dATP and dGTP. SP10c also coded for a DNA-dependent DNA polymerase, lysozyme, and a nuclease that degrades native bacterial DNA. Judging from the dependence of enzyme synthesis on the time of addition of rifampin (an inhibitor of the initiation of RNA synthesis), messengers for the di- and triphosphatase, as well as the nuclease, are transcribed from promoters that start to function 6 min postinfection. Promoters for polymerase and lysozyme did not become functional until 8 and 16 min postinfection, respectively.  相似文献   

13.
Bacillus megaterium NRRL B-1368 cells and spores were produced on Trypticase Soy Broth (TSB) and Agar (TSA) containing 3.8 μg of aflatoxin B1 per ml, analyzed for selected chemical constituents, and compared to cells and spores of B. megaterium produced on nontoxic Trypticase Soy Media. There was an initial 30% kill of cells after inoculation into toxic TSB and during the first 3.5 hr of incubation followed by a logarithmic growth phase in which the generation time was 75 min as compared to 20 min for the control culture. Chemical analyses revealed an increase in protein, deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) on both a per cell basis and a per cent dry weight basis when B. megaterium was grown in toxic TSB. There was a concurrent decrease in the total amounts of cellular protein, DNA, and RNA synthesized in toxic TSB. Amino acid analyses of control and test cell walls showed little, if any, difference in cell wall composition. About 97% sporulation of B. megaterium occurred after 3 days on nontoxic TSA although 6 days were required to attain 65% sporulation on toxic TSA. Germination of spores was not inhibited by 4.0 μg of aflatoxin per ml but outgrowth was. No significant differences were observed in the heat resistance, protein, DNA, RNA, or dipicolinic acid content of spores formed on toxic TSA and nontoxic TSA.  相似文献   

14.
15.
Infection of Agrobacterium tumefaciens B6, a tumor-producing plant pathogen, by bacteriophage R4, does not immediately shut off host deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis. Viral DNA synthesis begins soon after infection, but the host DNA is not shut off until after 35 min; net RNA and protein synthesis are not inhibited until 30 min after infection. The pattern of synthesis of phage particles was confirmed by electron microscopy of thin sections during the infection cycle. The phage particle consists of a polyhedral head, 65 nm in diameter, and a long flexible tail 210 nm long and 10 nm wide with helically arranged subunits. By gel electrophoresis, four major protein components with the following molecular weights were found in the capsid: 72,000, 45,000, 28,000, and 14,500. The phage DNA has a molecular weight of 30 million and a guanine-cytosine content of 59%.  相似文献   

16.
In vivo stability of bacteriophage T4 messenger ribonucleic acid   总被引:3,自引:0,他引:3  
Cohen, Paul S. (St. Jude Children's Research Hospital, Memphis, Tenn.), and Herbert L. Ennis. In vivo stability of bacteriophage T4 messenger ribonucleic acid. J. Bacteriol. 92:1345-1350. 1966.-A mutant of Escherichia coli B, defective in its transport and concentration of K(+), synthesizes ribonucleic acid (RNA) without the simultaneous synthesis of protein when depleted of this cation. The mutant was used to study the in vivo stability of phage T4 messenger RNA (mRNA) in the presence and absence of K(+). Experiments were performed in which the turnover of phage T4 mRNA was determined in infected cells continuously synthesizing RNA and in cells in which RNA synthesis was inhibited by actinomycin D. Phage mRNA was found to be more stable in the absence of K(+) than in the presence of either the cation or chloramphenicol.  相似文献   

17.
Starvation for a required amino acid of normal or RC(str)Escherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RC(rel)E. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RC(str) phenotype but not in cells of RC(rel) phenotype. Inhibition of phage DNA synthesis in amino acid-starved RC(str) host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought.  相似文献   

18.
Deoxyribonucleic acid (DNA) polymerase III is not detectable in Bacillus subtilis spores; the enzyme activity appears 20 to 30 min after spore activation and rapidly increases just before the onset of the first round of DNA replication (30 min later); the level of polymerase III further increases and reaches its maximum (on a per-genome basis) when the cells enter the vegetative phase of growth; this level is six- to eightfold higher than the one observed during germination. In the stationary phase, the polymerase III drops to levels comparable to those found in germinating spores at the first round of replication. On the contrary, DNA polymerase I is present at appreciable levels in the dormant spore; it increases during vegetative growth by a factor of three and, during the stationary phase, reaches its maximum level which is sixfold higher than that observed in the spores. The block of protein synthesis during vegetative growth does not cause an appreciable reduction of the two enzymes (in absolute terms), showing that the regulation of their levels is probably not due to a balance between synthesis and breakdown. These results indicate that polymerase III is probably one of the factors controlling the initiation of DNA synthesis during spore germination.  相似文献   

19.
The synthesis of poly(A)-containing RNA in outgrowing spores of Bacillus subtilis was studied. A significant amount of RNA puls-labelled with 3H-uridine is polyadenylated. With the beginning of RNA synthesis in outgrowing spores labelled poly(A)-containing RNA was detected. The amount of poly(A)-RNA during the outgrowth and first cell division remains constant. Besides poly(A)-RNA the synthesis of tRNA and rRNA occurs. These results indicate a simultaneous activation of synthesis of tRNA, rRNA as well as of poly(A)-containing RNA during outgrowth of B. subtilis spores.  相似文献   

20.
Morphological changes and synthesis of DNA, RNA, protein, and cell wall were investigated during germination of resting spores of Bacillus subtilis exposed transiently to the cyclic polypeptide antibiotics, polymyxin B and gramicidin S, and the aminoglycoside antibiotics, streptomycin, kanamycin, and gentamicin. Normal germinated spores showed breaks of the spore coat, a diminution in size and a fibrillar appearance of the cortex, a swelling core, a cell wall as thick as that of vegetable cells, some mesosomes and DNA fibrils. On the other hand, no breaks of the spore coat, a spore core with a slight swelling and irregular form, a thin cell wall, no demonstration of the nuclear material and no granularity in the cytoplasm were characteristic of the germinated spores derived from polymyxin B- and gramicidin S-treated resting spores. With gramicidin S-treated germinated spores a few vacuoles were formed in the cytoplasm. Both polymyxin B- and gramicidin S-treated germinated spores showed little or no synthesis of DNA, RNA, and protein. The vegetative cells derived from streptomycin-treated resting spores demonstrated several finely granular regions in the cytoplasm and a disorder of the fibrillar nucleoid, and their autolysis occurred early. Their DNA and RNA synthesis was normal, whereas protein synthesis was low. In spite of no occurrence of cell division and very low protein synthesis, the most striking characteristics of the outgrowing cells derived from kanamycin-treated resting spores were a markedly thickened cell wall and a continuous incorporation of labeled D-alanine suggesting cell wall synthesis; RNA synthesis was slightly lower and DNA synthesis was almost normal. The outgrowing cells from gentamicin-treated resting spores also revealed relatively thick cell walls and a very slight incorporation of labeled D-alanine. Their DNA and RNA synthesis was fairly low and protein synthesis was almost completely inhibited. These results coincide with the growth curves of individual antibiotic-treated resting spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号