首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The patterns of synonymous codon usage in 91 Drosophila melanogaster genes have been examined. Codon usage varies strikingly among genes. This variation is associated with differences in G+C content at silent sites, but (unlike the situation in mammalian genes) these differences are not correlated with variation in intron base composition and so are not easily explicable in terms of mutational biases. Instead, those genes with high G+C content at silent sites, resulting from a strong "preference" for a particular subset of the codons that are mostly C- ending, appear to be the more highly expressed genes. This suggests that G+C content is reduced in sequences where selective constraints are weaker, as indeed seen in a pseudogene. These and other data discussed are consistent with the effects of translational selection among synonymous codons, as seen in unicellular organisms. The existence of selective constraints on silent substitutions, which may vary in strength among genes, has implications for the use of silent molecular clocks.   相似文献   

2.
We conducted a genome-wide analysis of variations in guanine plus cytosine (G+C) content at the third codon position at silent substitution sites of orthologous human and mouse protein-coding nucleotide sequences. Alignments of 3776 human protein-coding DNA sequences with mouse orthologs having >50 synonymous codons were analyzed, and nucleotide substitutions were counted by comparing sequences in the alignments extracted from gap-free regions. The G+C content at silent sites in these pairs of genes showed a strong negative correlation (r = -0.93). Some gene pairs showed significant differences in G+C content at the third codon position at silent substitution sites. For example, human thymine-DNA glycosylase was A+T-rich at the silent substitution sites, while the orthologous mouse sequence was G+C-rich at the corresponding sites. In contrast, human matrix metalloproteinase 23B was G+C-rich at silent substitution sites, while the mouse ortholog was A+T-rich. We discuss possible implications of this significant negative correlation of G+C content at silent sites.  相似文献   

3.
The recent determination of the complete sequence of chromosome III from the yeast Saccharomyces cerevisiae allows, for the first time, the investigation of the long range primary structure of a eukaryotic chromosome. We have found that, against a background G+C level of about 35%, there are two regions (one in each chromosome arm) in which G+C values rise to over 50%. This effect is seen in silent sites within genes, but not in noncoding intergenic sequences. The variation in G+C content is not related to differential selection of synonymous codons, and probably reflects mutational biases. That the intergenic regions do not exhibit the same phenomenon is particularly interesting, and suggests that they are under substantial constraint. The yeast chromosome may be a model of the structure of the human genome, since there is evidence that it is also a mosaic of long regions of different base compositions, reflected in wide variation of G+C content at silent sites among genes. Two possible causes of this regional effect, replication timing, and recombination frequency, are discussed.  相似文献   

4.
Summary We have investigated the relationship between the G + C content of silent (synonymous) sites in codons and the amino acid composition of encoded proteins for approximately 1,600 human genes. There are positive correlations between silent site G + C and the proportions of codons for Arg, Pro, Ala, Trp, His, Gln, and Leu and negative ones for Tyr, Phe, Asn, Ile, Lys, Asp, Thr, and Glu. The median proteins coded by groups of genes that differ in silent-site G + C content also differ in amino acid composition, as do some proteins coded by homologous genes. The pattern of compositional change can be largely explained by directional mutation pressure, the genetic code, and differences in the frequencies of accepted amino acid substitutions; the shifts in protein composition are likely to be selectively neutral.Offprint requests to: D.W. Collins  相似文献   

5.
Synonymous codon usage variation among Giardia lamblia genes and isolates.   总被引:3,自引:0,他引:3  
The pattern of codon usage in the amitochondriate diplomonad Giardia lamblia has been investigated. Very extensive heterogeneity was evident among a sample of 65 genes. A discrete group of genes featured unusual codon usage due to the amino acid composition of their products: these variant surface proteins (VSPs) are unusually rich in Cys and, to a lesser extent, Gly and Thr. Among the remaining 50 genes, correspondence analysis revealed a single major source of variation in synonymous codon usage. This trend was related to the extent of use of a particular subset of 21 codons which are inferred to be those which are optimal for translation; at one end of this trend were genes expected to be expressed at low levels with near random codon usage, while at the other extreme were genes expressed at high levels in which these optimal codons are used almost exclusively. These optimal codons all end in C or G so G + C content at silent sites varies enormously among genes, from values around 40%, expected to reflect the background level of the genome, up to nearly 100%. Although VSP genes are occasionally extremely highly expressed, they do not, in general, have high frequencies of optimal codons, presumably because their high expression is only intermittent. These results indicate that natural selection has been very effective in shaping codon usage in G. lamblia. These analyses focused on sequences from strains placed within G. lamblia "assemblage A"; a few sequences from other strains revealed extensive divergence at silent sites, including some divergence in the pattern of codon usage.  相似文献   

6.
Codon usage patterns in the slime mould Dictyostelium discoideum have been re-examined (a total of 58 genes have been analysed). Considering the extreme A + T-richness of this genome (G + C = 22%), there is a surprising degree of codon usage variation among genes. For example, G + C content at silent sites varies from less than 10% to greater than 30%. It was previously suggested [Warrick, H.M. and Spudich, J.A. (1988) Nucleic Acids Res. 16: 6617-6635] that highly expressed genes contain fewer 'optimal' codons than genes expressed at lower levels. However, it appears that the optimal codons were misidentified. Multivariate statistical analysis shows that the greatest variation among genes is in relative usage of a particular subset of codons (about one per amino acid), many of which are C-ending. We have identified these as optimal codons, since (i) their frequency is positively correlated with gene expression level, and (ii) there is a strong mutation bias in this genome towards A and T nucleotides. Thus, codon usage in D. discoideum can be explained by a balance between the forces of mutational bias and translational selection.  相似文献   

7.
Summary The G+C content of DNA varies widely in different organisms, especially microorganisms. This variation is accompanied by changes in the nucleotide composition of silent positions in codons. (Silent positions are defined and explained in the text.) These changes are mostly neutral or near neutral, and appear to result from mutation pressure in the direction of increasing either A+T (AT pressure) or G+C(GC pressure) content. Variations in G+C content are also accompanied by substitutions at replacement positions in codons. These substituions produce changes in the amino acid content of homologous proteins. The examples studied were genes for 13 mitochondrial proteins in five species, and A and B genes for bacterial tryptophan synthase in four species.In microorganisms, varying AT and GC mutational pressures, presumably resulting from shifts in the DNA polymerase system, exert strong effects on molecular evolution by changing the G+C content of DNA. These effects may be greater than those of random drift. The effects of GC pressure on silent substitutions in the systems examined are several times as great as the effects on replacement substitutions.GC pressure is exerted on noncoding as well as coding regions in mitochondrial DNA. This is shown by the close correlation (correlation coefficient, 0.99) of the G+C content of the noncoding D loop of mitochondria with the G+C content of silent positions in the corresponding mitochondrial genes.  相似文献   

8.
Codon usage in Aspergillus nidulans.   总被引:17,自引:0,他引:17  
Summary Synonymous codon usage in genes from the ascomycete (filamentous) fungus Aspergillus nidulans has been investigated. A total of 45 gene sequences has been analysed. Multivariate statistical analysis has been used to identify a single major trend among genes. At one end of this trend are lowly expressed genes, whereas at the other extreme lie genes known or expected to be highly expressed. The major trend is from nearly random codon usage (in the lowly expressed genes) to codon usage that is highly biased towards a set of 19–20 optimal codons. The G+C content of the A. nidulans genome is close to 50%, indicating little overall mutational bias, and so the codon usage of lowly expressed genes is as expected in the absence of selection pressure at silent sites. Most of the optimal codons are C- or G-ending, making highly expressed genes more G+C-rich at silent sites.  相似文献   

9.
Selection on Silent Sites in the Rodent H3 Histone Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
R. W. DeBry  W. F. Marzluff 《Genetics》1994,138(1):191-202
Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.  相似文献   

10.
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.  相似文献   

11.
Despite the degeneracy of the genetic code, whereby different codons encode the same amino acid, alternative codons and amino acids are utilized nonrandomly within and between genomes. Such biases in codon and amino acid usage have been demonstrated extensively in prokaryote genomes and likely reflect a balance between the action of mutation, selection, and genetic drift. Here, we quantify the effects of selection and mutation drift as causes of codon and amino acid-usage bias in a large collection of nematode partial genomes from 37 species spanning approximately 700 Myr of evolution, as inferred from expressed sequence tag (EST) measures of gene expression and from base composition variation. Average G + C content at silent sites among these taxa ranges from 10% to 63%, and EST counts range more than 100-fold, underlying marked differences between the identities of major codons and optimal codons for a given species as well as influencing patterns of amino acid abundance among taxa. Few species in our sample demonstrate a dominant role of selection in shaping intragenomic codon-usage biases, and these are principally free living rather than parasitic nematodes. This suggests that deviations in effective population size among species, with small effective sizes among parasites, are partly responsible for species differences in the extent to which selection shapes patterns of codon usage. Nevertheless, a consensus set of optimal codons emerges that is common to most taxa, indicating that, with some notable exceptions, selection for translational efficiency and accuracy favors similar sets of codons regardless of the major codon-usage trends defined by base compositional properties of individual nematode genomes.  相似文献   

12.
In recent years, the amount of molecular sequencing data from Tetrahymena thermophila has dramatically increased. We analyzed G + C content, codon usage, initiator codon context and stop codon sites in the extremely A + T rich genome of this ciliate. Average G + C content was 38% for protein coding regions, 21% for 5' non-coding sequences, 19% for 3' non-coding sequences, 15% for introns, 19% for micronuclear limited sequences and 17% for macronuclear retained sequences flanking micronuclear specific regions. The 75 available T. thermophila protein coding sequences favored codons ending in T and, where possible, avoided those with G in the third position. Highly expressed genes were relatively G + C-rich and exhibited an extremely biased pattern of codon usage while developmentally regulated genes were more A + T-rich and showed less codon usage bias. Regions immediately preceding Tetrahymena translation initiator codons were generally A-rich. For the 60 stop codons examined, the frequency of G in the end + 1 site was much higher than expected whereas C never occupied this position.  相似文献   

13.
Synonymous codon usage in Pseudomonas aeruginosa PA01   总被引:3,自引:0,他引:3  
Grocock RJ  Sharp PM 《Gene》2002,289(1-2):131-139
Pseudomonas aeruginosa PA01 has a large (6.7 Mbp) genome with a high (67%) G+C content. Codon usage in this species is dominated by this compositional bias, with the average G+C content at synonymously variable third positions of codons being 83%. Nevertheless, there is some variation of synonymous codon usage among genes. The nature and causes of this variation were investigated using multivariate statistical analyses. Three trends were identified. The major source of variation was attributable to genes with unusually low G+C content that are probably due to horizontal transfer. A lesser trend among genes was associated with the preferential use of putatively translationally optimal codons in genes expressed at high levels. In addition, genes on the leading strand of replication were on average more G+T-rich. Our findings contradict the results of two previous analyses, and the reasons for the discrepancies are discussed.  相似文献   

14.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

15.
A Eyre-Walker 《Genetics》1999,152(2):675-683
It has been suggested that mutation bias is the major determinant of base composition bias at synonymous, intron, and flanking DNA sites in mammals. Here I test this hypothesis using population genetic data from the major histocompatibility genes of several mammalian species. The results of two tests are inconsistent with the mutation hypothesis in coding, noncoding, CpG-island, and non-CpG-island DNA, but are consistent with selection or biased gene conversion. It is argued that biased gene conversion is unlikely to affect silent site base composition in mammals. The results therefore suggest that selection is acting upon silent site G + C content. This may have broad implications, since silent site base composition reflects large-scale variation in G + C content along mammalian chromosomes. The results therefore suggest that selection may be acting upon the base composition of isochores and large sections of junk DNA.  相似文献   

16.
DNA mismatch repair and synonymous codon evolution in mammals   总被引:4,自引:3,他引:1  
It has been suggested that the differences in synonymous codon use between mammalian genes within a genome are due to differences in the efficiency of DNA mismatch repair. This hypothesis was tested by developing a model of mismatch repair, which was used to predict the expected relationship between the rate of substitution and G+C content at silent sites. It was found that the silent-substitution rate should decline with increasing G+C content over most of the G+C-content range, if it is assumed that mismatch repair is G+C biased, an assumption which is supported by data. This prediction was then tested on a set of 58 primate and artiodactyl genes. There was no evidence of a direct decline in substitution rate with increasing G+C content, for either twofold- or fourfold-degenerate sites. It was therefore concluded that variation in the efficiency of mismatch repair is not responsible for the differences in synonymous codon use between mammalian genes. In support of this conclusion, analysis of the model also showed that the parameter range over which mismatch repair can explain the differences in synonymous codon use between genes is very small.   相似文献   

17.
Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.  相似文献   

18.
BACKGROUND: Nucleotide substitution rates and G + C content vary considerably among mammalian genes. It has been proposed that the mammalian genome comprises a mosaic of regions - termed isochores - with differing G + C content. The regional variation in gene G + C content might therefore be a reflection of the isochore structure of chromosomes, but the factors influencing the variation of nucleotide substitution rate are still open to question. RESULTS: To examine whether nucleotide substitution rates and gene G + C content are influenced by the chromosomal location of genes, we compared human and murid (mouse or rat) orthologues known to belong to one of the chromosomal (autosomal) segments conserved between these species. Multiple members of gene families were excluded from the dataset. Sets of neighbouring genes were defined as those lying within 1 centiMorgan (cM) of each other on the mouse genetic map. For both synonymous substitution rates and G + C content at silent sites, neighbouring genes were found to be significantly more similar to each other than sets of genes randomly drawn from the dataset. Moreover, we demonstrated that the regional similarities in G + C content (isochores) and synonymous substitution rate were independent of each other. CONCLUSIONS: Our results provide the first substantial statistical evidence for the existence of a regional variation in the synonymous substitution rate within the mammalian genome, indicating that different chromosomal regions evolve at different rates. This regional phenomenon which shapes gene evolution could reflect the existence of 'evolutionary rate units' along the chromosome.  相似文献   

19.
Among a sample of 39 Geodia cydonium (Demospongiae, Porifera) genes, with an average G + C content of 51.2%, extensive structural heterogeneity and considerable variations in synonymous codon usage were found. The G + C content of coding sequences and G + C content at silent codon positions (GC3S) varied from 42.4 to 59.2% and from 35.6 to 76.5%, respectively. Correspondence analysis of 39 genes revealed that putative highly expressed genes preferentially use a limited subset of codons, which were therefore defined as preferred codons in G. cydonium . A total of 22 preferred codons for 18 amino acids with synonyms in codons were identified and they all (with one exception) end with C or G. Among these codons there are also C- and G-ending codons which were previously identified as codons optimal for translation in a variety of eukaryotes, including metazoans and plants. The bias in synonymous codon usage in putative highly expressed G. cydonium genes is moderate, indicating that these genes are not shaped under strong natural selection. We postulate that the preference for C- and G-ending codons was already established in the ancestor of all Metazoa, including also sponges. This ancestor most probably also had a G + C rich genome. The selection toward C- and G-ending codons has been largely conserved throughout eukaryote evolution; exceptions are, for example, mammals for which strong mutational biases caused switches from that rule.  相似文献   

20.
We show that in animal mitochondria homologous genes that differ in guanine plus cytosine (G + C) content code for proteins differing in amino acid content in a manner that relates to the G + C content of the codons. DNA sequences were analyzed using square plots, a new method that combines graphical visualization and statistical analysis of compositional differences in both DNA and protein. Square plots divide codons into four groups based on first and second position A + T (adenine plus thymine) and G + C content and indicate differences in amino acid content when comparing sequences that differ in G + C content. When sequences are compared using these plots, the amino acid content is shown to correlate with the nucleotide bias of the genes. This amino acid effect is shown in all protein-coding genes in the mitochondrial genome, including cox I, cox II, and cyt b, mitochondrial genes which are commonly used for phylogenetic studies. Furthermore, nucleotide content differences are shown to affect the content of all amino acids with A + T- and G + C-rich codons. We speculate that phylogenetic analysis of genes so affected may tend erroneously to indicate relatedness (or lack thereof) based only on amino acid content. Received: 3 July 1996 / Accepted: 6 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号