首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
Nitrogen fixation by the microorganisms in the gut of termites is one of the crucial aspects of symbiosis, since termites usually thrive on a nitrogen-poor diet. The phylogenetic diversity of the nitrogen-fixing organisms within the symbiotic community in the guts of various termite species was investigated without culturing the resident microorganisms. A portion of the dinitrogenase reductase gene (nifH) was directly amplified from DNA extracted from the mixed population in the termite gut. Analysis of deduced amino acid sequences of the products of the clonally isolated nifH genes revealed the presence of diverse nifH sequences in most of the individual termite species, and their constituents were considerably different among termite species. A majority of the nifH sequences from six lower termites, which showed significant levels of nitrogen fixation activity, could be assigned to either the anaerobic nif group (consisting of clostridia and sulfur reducers) or the alternative nif methanogen group among the nifH phylogenetic groups. In the case of three higher termites, which showed only low levels of nitrogen fixation activity, a large number of the sequences were assigned to the most divergent nif group, probably functioning in some process other than nitrogen fixation and being derived from methanogenic archaea. The nifH groups detected were similar within each termite family but different among the termite families, suggesting an evolutionary trend reflecting the diazotrophic habitats in the symbiotic community. Within these phylogenetic groups, the sequences from the termites formed lineages distinct from those previously recognized in studies using classical microbiological techniques, and several sequence clusters unique to termites were found. The results indicate the presence of diverse potentially nitrogen-fixing microbial assemblages in the guts of termites, and the majority of them are as yet uncharacterized.  相似文献   

2.
Tayasu  Ichiro 《Ecological Research》1998,13(3):377-387
In this paper, I review carbon and nitrogen isotopic (natural abundance levels) studies of termites. The carbon isotope ratio of CH4 emitted from termites, together with the emission rates of CO2, CH4 and H2, showed several trends corresponding to the kinds of symbiotic microbes and feeding habits. The fraction of methane oxidized in the nest structure was estimated by comparing carbon isotope ratio of CH4 emitted from the nest with that produced by termites in the nest. Symbiotic nitrogen fixation in the gut of termites has been shown to have a significant contribution to the nitrogen economy in some wood-feeding termites. The carbon isotope ratio distinguishes between C4 from C3 plants, and the fractional contribution of grass in the diet can thereby be estimated. The carbon and nitrogen isotope ratios in termites are discernible among soil-feeders, fungus cultivators and wood-feeders. Wood/soil-interface feeders have intermediate values between wood- and soil-feeders, and thus carbon and nitrogen stable isotope ratios are assumed to characterize the degree of humification of the material consumed by termites. It is suggested that carbon and nitrogen isotope ratios are useful indicators of the functional position of termites in the decomposition process. A similar isotope pattern has been obtained in earthworms, suggesting that isotope signatures might be useful parameters in investigating detritivorous animals in general.  相似文献   

3.
Abstract. Termites contribute nitrogen to their habitat through the nitrogenase activity of their bacterial symbionts. Previous studies indicate that high levels of dietary nitrogen suppress nitrogen fixation in termites. We examined the effects of dietary nitrogen on fixation rates in termites in both field and laboratory experiments. Ten field cplonies of Reticulitermes were collected and assayed for nitrogenase activity in July 1993, October 1993, January 1994, and April 1994. The nitrogen content of the wood collected with each colony was determined. There was no correlation between termite nitrogen fixation rates and the amount of nitrogen in their food for any of the four collection periods. In laboratory experiments, nitrogen fixation rates decreased when termites were fed filter paper treated with 2% and 5% ammonium nitrate or a 5% mixture of the amino acids proline, tryptophan and leucine, compared to water-treated controls. By contrast, the nitrogenase activity of termites fed filter paper treated with 2% and 5% ammonium phosphate, a mixture of the amino acids histidine, serine and aspartic acid, or 2% and 5% urea did not differ from the controls. However, nitrogenase activity increased when termites were fed with 2% uric acid. No clear association exists between termite nitrogen fixation and the nitrogen content of their food.  相似文献   

4.
1. Nitrogen and carbon stable-isotope ratios (δ15N and δ13C) of body tissues, mound/nest materials and dietary substrates were determined in termite species with differing trophic habits, sampled from the Mbalmayo Forest Reserve, southern Cameroon.
2. δ15N of termite tissues was enriched gradually along a spectrum of species representing a trophic gradient from wood- to soil-feeding. Species that could be identified from their general biology and from gut content analysis as feeding on well-rotted wood or as wood/soil interface feeders showed δ15N intermediate between sound-wood-feeders and soil-feeders. It is proposed that δ15N is therefore a possible indicator of the functional position of species in the humification process. Differences in δ13C were also observed between wood-feeding and soil-feeding forms.
3. High values of δ15N in soil-feeding termites suggest that nitrogen fixation is of little importance in these species.
4. A wide range of isotope effects (the difference in isotope ratios between termites and their diet) was observed for both nitrogen (Δδ15N = –1.6 to + 8.8‰) and carbon (Δδ13C = –2.2 to + 3.0‰), which suggests a diversity of nutrient acquisition mechanisms within termites and diverse relationships between termites and their intestinal micro-organisms.  相似文献   

5.
The low inherent soil fertility, especially nitrogen (N) constrains arable agriculture in Botswana. Nitrogen is usually added to soil through inorganic fertilizer application. In this study, biological nitrogen fixation by legumes is explored as an alternative source of N. The objectives of this study were to measure levels of N2 fixation by grain legumes such as cowpea, Bambara groundnut and groundnut in farmers’ fields as well as to estimated N2 fixation by indigenous herbaceous legumes growing in the Okavango Delta. Four flowering plants per species were sampled from the panhandle part of the Okavango Delta and Tswapong area. Nitrogen fixation was measured using the 15N stable isotope natural abundance technique. The δ15N values of indigenous herbaceous legumes indicated that they fixed N2 (?1.88 to +1.35 ‰) with the lowest value measured in Chamaecrista absus growing in Ngarange (Okavango Delta). The δ15N values of grain legumes growing on farmers’ fields ranging from ?1.2 ‰ to +3.3 ‰ indicated that they were fixing N2. For grain legumes growing at most farms, %Ndfa were above 50% indicating that they largely depended on symbiotic fixation for their N nutrition. With optimal planting density, Bambara groundnuts on farmers’ fields could potentially fix over 90 kg N/ha in some parts of Tswapong area and about 60 kg N/ha in areas around the Okavango Delta. Results from this study have shown that herbaceous indigenous legumes and cultivated legumes play an important role in the cycling of N in the soil. It has also been shown that biological N2 on farmer’s field could potentially supply the much needed N for the legumes and the subsequent cereal crops if plant densities are optimized with the potential to increase food security and mitigate climate change.  相似文献   

6.
Abstract The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13C isotope values, ?13.8‰ to ?14.0‰) and C3 plants (δ13C isotope values, ?25.6‰ to ?27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H. mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.  相似文献   

7.
Feces are a treasure trove in the study of animal behavior and ecology. Stable carbon and nitrogen isotope analysis allows to assess the dietary niches of elusive primate species and primate breastfeeding behavior. However, some fecal isotope data may unwillingly be biased toward the isotope ratios of undigested plant matter, requiring more consistent sample preparation protocols. We assess the impact of this potential data skew in 114 fecal samples of wild bonobos (Pan paniscus) by measuring the isotope differences (Δ13C, Δ15N) between bulk fecal samples containing larger particles (>1 mm) and filtered samples containing only small particles (<1 mm). We assess the influence of fecal carbon and nitrogen content (ΔC:N) and sample donor age (subadult, adult) on the resulting Δ13C, Δ15N values (n = 228). Additionally, we measure the isotope ratios in three systematically sieved fecal samples of chimpanzees (Pan troglodytes verus), with particle sizes ranging from 20 μm to 8 mm (n = 30). We found differences in fecal carbon and nitrogen content, with the smaller fecal fraction containing more nitrogen on average. While the Δ13C values were small and not affected by age or ΔC:N, the Δ15N values were significantly influenced by fecal ΔC:N, possibly resulting from the differing proportions of undigested plant macroparticles. Significant relationships between carbon stable isotope ratios (δ13C) values and %C in large fecal fractions of both age groups corroborated this assessment. Δ15N values were significantly larger in adults than subadults, which should be of concern in isotope studies comparing adult females with infants to assess breastfeeding. We found a random variation of up to 3.0‰ in δ13C and 2.0‰ in nitrogen stable isotope ratios within the chimpanzee fecal samples separated by particle sizes. We show that particle size influences isotope ratios and propose a simple, cost-effective filtration method for primate feces to exclude larger undigested food particles from the analysis, which can easily be adopted by labs worldwide.  相似文献   

8.
Nitrogen (N) isotope patterns are useful for understanding carbon and nitrogen dynamics in mycorrhizal systems but questions remain about how different N forms, fungal symbionts, and N availabilities influence δ15N signatures. Here, we studied how biomass allocation and δ15N patterns in Pinus sylvestris L. cultures were affected by nitrogen supply rate (3% per day or 4% per day relative to the nitrogen already present), nitrogen form (ammonium versus nitrate), and mycorrhizal colonization by fungi with a greater (Laccaria laccata) or lesser (Suillus bovinus) ability to assimilate nitrate. Mycorrhizal (fungal) biomass was greater with ammonium than with nitrate nutrition for Suillus cultures but similar for Laccaria cultures. Total biomass was less with nitrate nutrition than with ammonium nutrition for nonmycorrhizal cultures and was less in mycorrhizal cultures than in nonmycorrhizal cultures. The sequestration of available N by mycorrhizal fungi limited plant N supply. This limitation and the higher energetic cost of nitrate reduction than ammonium assimilation appeared to control plant biomass accumulation. Colonization decreased foliar δ15N by 0.5 to 2.2‰ (nitrate) or 1.7 to 3.5‰ (ammonium) and increased root tip δ15N by 0 to 1‰ (nitrate) or 0.6 to 2.3‰ (ammonium). Root tip δ15N and fungal biomass on root tips were positively correlated in ammonium treatments (r 2?=?0.52) but not in nitrate treatments (r 2?=?0.00). Fungal biomass on root tips was enriched in 15N an estimated 6–8‰ relative to plant biomass in ammonium treatments. At high nitrate availability, Suillus colonization did not reduce plant δ15N. We conclude that: (1) transfer of 15N-depleted N from mycorrhizal fungi to plants produces low plant δ15N signatures and high root tip and fungal δ15N signatures; (2) limited nitrate reduction in fungi restricted transfer of 15N-depleted N to plants when nitrate is supplied and may account for many field observations of high plant δ15N under such conditions; (3) plants could transfer assimilated nitrogen to fungi at high nitrate supply but such transfer was without 15N fractionation. These factors probably control plant δ15N patterns across N availability gradients and were here incorporated into analytical equations for interpreting nitrogen isotope patterns in mycorrhizal fungi and plants.  相似文献   

9.
Seasonal patterns of nitrogen fixation in termites   总被引:2,自引:0,他引:2  
1. Termite nitrogenase activity was highest in autumn and spring (≈ 3 μg N2 fixed termite fresh mass (g)–1 day–1) and lowest in winter and summer (≈ 0·8 μg N2 fixed termite fresh mass (g)–1 day–1).
2. The nitrogenase activity of worker termites was significantly higher than all other castes (1·58 ± 0·27 μg N2 fixed termite fresh mass (g)–1 day–1).
3. Worker termites constituted the largest proportion of all the castes throughout the study period (≈ 90%).
4. The localized input of fixed nitrogen by termites may reach 15·3 mg N log–1 day–1 and 5·6 g N log–1 year–1.  相似文献   

10.
Moawad  H.  Badr El-Din  S.M.S.  Abdel-Aziz  R.A. 《Plant and Soil》1998,204(1):95-106
The diversity of rhizobia nodulating common bean ( Phaseolus vulgaris), berseem clover (Trifolium alexanderinum) and lentil (Lens culinaris) was assessed using several characterization techniques, including nitrogen fixation efficiency, intrinsic antibiotic-resistance patterns (IAR), plasmid profiles, serological markers and rep-PCR fingerprinting. Wide diversity among indigenous rhizobial populations of the isolates from lentil, bean and clover was found. Strikingly, a large percentage of the indigenous rhizobial population was extremely poor at fixing nitrogen. This emphasizes the need to increase the balance of highly efficient strains within the rhizobial population. Use of high-quality inocula strains that survive and compete with other less-desired and less-efficient N2-fixing rhizobia represents the best approach to increase biological nitrogen fixation of the target legume. In field-grown lentils, the inoculant strains were not able to outcompete the indigenous rhizobia and the native lentil rhizobia occupied 76–88% of the total nodules formed on inoculated plants. Nitrogen fixation by lentils, estimated using the 15N isotope dilution technique, ranged between 127 to 139 kg ha-1 in both inoculated and un-inoculated plants. With berseem clover, the inoculant strains were highly competitive against indigenous rhizobia and occupied 52–79% of all nodules. Inoculation with selected inocula improved N2 fixation by clover from 162 to 205 kg ha-1 in the three cuts as compared with 118 kg ha-1 in the un-inoculated treatment. The results also indicated the potential for improvement of N2 fixation by beans through the application of efficient N2-fixing rhizobia.  相似文献   

11.
InCoptotermes formosanus workers containing all (normally faunated), none (completely defaunated), or all but one species (partially defaunated) of their symbiotic protozoa, protein-bound amino acid contents changed little in 1, 3, 5, or 8 weeks after defaunation. There were few differences in the amino acid contents of the three termite groups at any one time. Thus, the termites may be able to maintain their protein levels without protozoa, dead protozoa probably do not furnish needed nitrogen, and symbiotic protozoa gave no evidence of the ability to fix atmospheric nitrogen.  相似文献   

12.
AIMS: To analyse the symbiotic variations within indigenous populations of rhizobia nodulating red clover (Trifolium pratense L.) in soils of northern Norway and Sweden at different times of the growing season. METHODS AND RESULTS: A total of 431 nodule isolates sampled under field conditions in summer and autumn, were characterized genetically by targeting both chromosomal and symbiotic genes. The Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction (PCR) fingerprinting of chromosomal DNA revealed considerable variation within the isolated populations that was more influenced by geographical origin than sampling time. Analysis of PCR amplified nodEF gene on the symbiotic plasmid by restriction fragment length polymorphism revealed a high proportion of nod types common to the two studied sites. The symbiotic efficiency of the isolates, representing both dominating and rare nodEF genotypes, showed high N(2) fixation rates in symbiosis with the host plant in a greenhouse experiment using the (15)N isotope dilution method. CONCLUSIONS: Effective N(2)-fixing strains of Rhizobium leguminosarum bv. trifolii nodulating red clover are common and genetically diverse in these northern Scandinavia soils. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the variability, stability and dynamics of resident populations of rhizobia nodulating red clover in Scandinavian soils which has practical implications for applying biological nitrogen fixation in subarctic plant production.  相似文献   

13.
Zhou X  Smith JA  Oi FM  Koehler PG  Bennett GW  Scharf ME 《Gene》2007,395(1-2):29-39
Termites have developed cellulose digestion capabilities that allow them to obtain energy and nutrition from nutritionally poor food sources, such as lignocellulosic plant material and residues derived from it (e.g., wood and humus). Lower termites, which are equipped with both endogenous (i.e., of termite origin) and symbiotic cellulases, feed primarily on wood and wood-related materials. This study investigated cellulase gene diversity, structure, and activity in the lower termite, Reticulitermes flavipes (Kollar). We initially used a metagenomics approach to identify four genes encoding one endogenous and three symbiotic cellulases, which we refer to as Cell-1, -2, -3 and -4. These four genes encode proteins that share significant sequence similarity with known endoglucanases, exoglucanases and xylanases. Phylogenetic analyses further supported these inferred relationships by showing that each of the four cellulase proteins clusters tightly with respective termite, protozoan or fungal cellulases. Gene structure studies revealed that Cell-1, -3 and -4 are intron-free, while Cell-2 contains the first intron sequence to be identified from a termite symbiont cellulase. Quantitative real-time PCR (qRT-PCR) revealed that the endogenous Cell-1 gene is expressed exclusively in the salivary gland/foregut, whereas symbiotic Cell-2, -3, and -4 are highly expressed in the hindgut (where cellulolytic protists are harbored). Cellulase activity assays mapped the distribution pattern of endoglucanase, exoglucanase and xylanase activity throughout the R. flavipes digestive tract. Cellulase gene expression correlated well with the specific types of cellulolytic activities observed in each gut region (foregut+salivary gland, midgut and hindgut). These results suggest the presence of a single unified cellulose digestion system, whereby endogenous and symbiotic cellulases work sequentially and collaboratively across the entire digestive tract of R. flavipes.  相似文献   

14.
Biological nitrogen fixation of leguminous crops is becoming increasingly important in attempts to develop sustainable agricultural production. However, these crops are quite variable in their effectiveness in fixing nitrogen. By the use of the 15N isotope dilution method some species have been found to fix large proportions of their nitrogen, while others like common bean have been considered rather inefficient. Methods for increasing N2 fixation are therefore of great importance in any legume work. Attempts to enhance nitrogen fixation of grain legumes has been mainly the domain of microbiologists who have selected rhizobial strains with superior effectiveness or competitive ability. Few projects have focused on the plant symbiont with the objective of improving N2 fixation as done in the FAO/IAEA Co-ordinated Research Programme which is being reported in this volume. The objective of the present paper is to discuss some possibilities available for scientists interested in enhancing symbiotic nitrogen fixation in grain legumes. Examples will be presented on work performed using agronomic methods, as well as work on the plant and microbial symbionts. There are several methods available to scientists working on enhancement of N2 fixation. No one approach is better than the others; rather work on the legume/Rhizobium symbiosis combining experience from various disciplines in inter-disciplinary research programmes should be pursued.  相似文献   

15.
稳定同位素技术广泛地用于描绘生态系统中食物网的食物来源和营养级关系,但是消费者不同组织转化率的研究相对较少。通过锦鲤摄食人工添加15N蓝藻的食性转化实验,研究不同组织N同位素转化率的差异,探讨组织生长和代谢对同位素转化的相对贡献,为不同时间尺度的稳定同位素研究取样奠定基础。结果表明,通过42d的加富蓝藻饲喂,各组织的N稳定同位素发生显著变化。肝的δ15N为(19.3±1.4)‰,显著高于其它组织,其次为鱼鳍((15.6±1.0)‰)和血液((12.6±0.4)‰),肌肉的δ15N‰最低,为(9.9±0.7)‰。在随后的同位素稀释实验中,锦鲤的体重增加,相对生长速率为0.011d-1,鳍肉的转化率最快,达到11.4%/d,半衰期仅为6.1d,其次是血液和肝,肌肉的转化率最低,仅有3.8%/d,半衰期最长,为18.4d。代谢衰减指数c和-1不存在显著差异,表明锦鲤各组织的N同位素转化主要由组织生长引起。结论显示,同位素富集-稀释法可以有效评价鱼类食性转变对不同组织同位素转化的差异,鳍肉和血液同位素分析可以作为锦鲤食性转变快速追踪的手段。  相似文献   

16.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

17.
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.  相似文献   

18.
Two strains of facultatively anaerobic, N2-fixing bacteria were isolated from guts of Coptotermes formosanus and identified as Enterobacter agglomerans. The deoxyribonucleic acid base composition of isolates was 52.6 and 53.1 mol% guanine plus cytosine. Both isolates and a known strain of E. agglomerans carried out a mixed acid type of glucose fermentation. N2 fixation by E. agglomerans was inhibited by O2; consequently, N2 served as an N source only for cells growing anaerobically in media lacking a major source of combined N. However, peptone, NH4Cl, or KNO3 served as an N source under either aerobic or anaerobic conditions. It was estimated that 2 x 10(2) cells of E. agglomerans were present per termite gut. This value was 100-fold lower than expected, based on N2 fixation, low recoveries of E. agglomerans may be related to the marked decrease in N2 fixation rates observed when intact termites or their extracted guts were manipulated for the isolation of bacteria. It was concluded that the N2-fixing activity of E. agglomerans may be important to the N economy of C. formosanus.  相似文献   

19.
Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 x 10 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH(3) was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by CO(2) evolution from [2-C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut x h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.  相似文献   

20.
* Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号