首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)‐induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi‐derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF‐induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 757–777, 2015  相似文献   

2.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   

3.
The neuron uses two families of microtubule-based motors for fast axonal transport, kinesin, and cytoplasmic dynein. Cytoplasmic dynein moves membranous organelles from the distal regions of the axon to the cell body. Because dynein is synthesized in the cell body, it must first be delivered to the axon tip. It has recently been shown that cytoplasmic dynein is moved from the cell body along the axon by two different mechanisms. A small amount is associated with fast anterograde transport, the membranous organelles moved by kinesin. Most of the dynein is transported in slow component b, the actin-based transport compartment. Dynactin, a protein complex that binds dynein, is also transported in slow component b. The dynein in slow component b binds to microtubules in an ATP-dependent manner in vitro, suggesting that this dynein is enzymatically active. The finding that functionally active dynein, and dynactin, are associated with the actin-based transport compartment suggests a mechanism whereby dynein anchored to the actin cytoskeleton via dynactin provides the motive force for microtubule movement in the axon.  相似文献   

4.
《The Journal of cell biology》1987,105(6):2827-2835
We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they be called "neuronal parcels."  相似文献   

5.
Phosphatidylinositol 3-kinase (PI3K) activity is known to be required for the extension of embryonic sensory axons. Inhibition of PI3K has also been shown to mediate axon retraction and growth cone collapse in response to semaphorin 3A. However, the effects of inhibiting PI3K on the neuronal cytoskeleton are not well characterized. We have previously reported that semaphorin 3A-induced axon retraction involves activation of myosin II, the formation of an intra-axonal F-actin bundle cytoskeleton, and blocks the formation of F-actin patches that serve as precursors to filopodial formation in axons. We now report that inhibition of PI3K results in activation of myosin II in axons. Inhibition of myosin II activity, or its upstream regulatory kinase RhoA-kinase, blocked axon retraction induced by inhibition of PI3K. In addition, inhibition of PI3K also induced intra-axonal F-actin bundles, which likely serve as a substratum for myosin II-based force generation during axon retraction. In axons, filopodia are formed from axonal F-actin patch precursors. Analysis of axonal F-actin patch formation in eYFP-actin expressing neurons revealed that inhibition of PI3K blocked formation of axonal F-actin patches, and thus filopodial formation. These data provide insights into the regulation of the neuronal cytoskeleton by PI3K and are consistent with the notion that decreased levels of PI3K activity mediate axon retraction and growth cone collapse in response to semaphorin 3A.  相似文献   

6.
Filopodia on neuronal growth cones constantly extend and retract, thereby functioning as both sensory probes and structural devices during neuronal pathfinding. To better understand filopodial dynamics and their regulation by encounters with molecules in the environment, we investigated filopodial dynamics of identified B5 neurons from the buccal ganglion of the snail Helisoma trivolvis before and after treatment with nitric oxide (NO). We have previously demonstrated that treatment with several NO-donors caused a transient, cGMP-mediated elevation in [Ca(2+)](i), which was causally related to an increase in filopodial length and a reduction in the number of filopodia on growth cones. We demonstrate here that these effects were the result of distinct changes in filopodial dynamics. The NO-donor SIN-1 induced a general increase in filopodial motility. Filopodial elongation after treatment with SIN-1 resulted from a significant increase in the rate at which filopodia extended, as well as a significant increase in the time filopodia spent elongating. The reduction in filopodial number was caused by a significant decrease in the frequency with which new filopodia were inserted into the growth cone. With the exception of the back where filopodia appeared less motile, filopodial dynamics appeared to be mostly independent of the location on the growth cone. These results suggest that NO can regulate filopodial dynamics on migrating growth cones and might function as a messenger to adjust the action radius of a growth cone during pathfinding.  相似文献   

7.
Nitric oxide (NO) has been proposed to play an important role during neuronal development. Since many of its effects occur during the time of growth cone pathfinding and target interaction, we here test the hypothesis that part of NO's effects might be exerted at the growth cone. We found that low concentrations of the NO-donors DEA/NO, SIN-1, and SNP caused a rapid and transient elongation of filopodia as well as a reduction in filopodial number. These effects resulted from distinct changes in filopodial extension and retraction rates. Our novel findings suggest that NO could play a physiological role by temporarily changing a growth cone's morphology and switching its behavior from a close-range to a long-range exploratory mode. We subsequently dissected the pathway by which NO acted on growth cones. The effect of NO donors on filopodial length could be blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase (sGC), indicating that NO acted via sGC. Supporting this idea, injection of cyclic GMP (cGMP) mimicked the effect of NO donors on growth cone filopodia. Moreover, application of NO-donors as well as injection of cGMP elicited a rapid and transient rise in intracellular calcium in growth cones, indicating that NO acted via cGMP to elevate calcium. This calcium rise, as well as the morphological effects of SIN-1 on filopodia, were blocked by preventing calcium entry. Given the role of filopodia in axonal guidance, our new data suggest that NO could function at the neuronal growth cone as an intracellular and/or intercellular signaling molecule by affecting steering decisions during neuronal pathfinding.  相似文献   

8.
Phosphatidylinositol-3-kinase (PI-3K) has been reported to affect neurite outgrowth both in vivo and in vitro. Here we investigated the signaling pathways by which PI-3K affects neurite outgrowth and growth cone motility in identified snail neurons in vitro. Inhibition of PI-3K with wortmannin (2 microM) or LY 294002 (25 microM) resulted in a significant elongation of filopodia and in a slow-down of neurite outgrowth. Experiments using cytochalasin and blebbistatin, drugs that interfere with actin polymerization and myosin II activity, respectively, demonstrated that filopodial elongation resulting from PI-3K inhibition was dependent on actin polymerization. Inhibition of strategic kinases located downstream of PI-3K, such as Akt, ROCK, and MEK, also caused significant filopodial elongation and a slow-down in neurite outgrowth. Another growth cone parameter, filopodial number, was not affected by inhibition of PI-3K, Akt, ROCK, or MEK. A detailed study of growth cone behavior showed that the filopodial elongation induced by inhibiting PI-3K, Akt, ROCK, and MEK was achieved by increasing two motility parameters: the rate with which filopodia extend (extension rate) and the time that filopodia spend elongating. Whereas the inhibition of ROCK or Akt (both activated by the lipid kinase activity of PI-3K) and MEK (activated by the protein kinase activity of PI-3K) had additive effects, simultaneous inhibition of Akt and ROCK showed no additive effect. We further demonstrate that the effects on filopodial dynamics investigated were calcium-independent. Taken together, our results suggest that inhibition of PI-3K signaling results in filopodial elongation and a slow-down of neurite advance, reminiscent of growth cone searching behavior.  相似文献   

9.
The direction of neurite elongation is controlled by various environmental cues. However, it has been reported that even in the absence of any extrinsic directional signals, neurites turn clockwise on two-dimensional substrates. In this study, we have discovered autonomous rotational motility of the growth cone, which provides a cellular basis for inherent neurite turning. We have developed a technique for monitoring three-dimensional motility of growth cone filopodia and demonstrate that an individual filopodium rotates on its own longitudinal axis in the right-screw direction from the viewpoint of the growth cone body. We also show that the filopodial rotation involves myosins Va and Vb and may be driven by their spiral interactions with filamentous actin. Furthermore, we provide evidence that the unidirectional rotation of filopodia causes deflected neurite elongation, most likely via asymmetric positioning of the filopodia onto the substrate. Although the growth cone itself has been regarded as functionally symmetric, our study reveals the asymmetric nature of growth cone motility.  相似文献   

10.
Microtubule polymer assembly and transport during axonal elongation   总被引:15,自引:9,他引:6       下载免费PDF全文
As axons elongate, tubulin, which is synthesized in the cell body, must be transported and assembled into new structures in the axon. The mechanism of transport and the location of assembly are presently unknown. We report here on the use of tubulin tagged with a photoactivatable fluorescent group to investigate these issues. Photoactivatable tubulin, microinjected into frog embryos at the two-cell stage, is incorporated into microtubules in neurons obtained from explants of the neural tube. When activated by light, a fluorescent mark is made on the microtubules in the axon, and transport and turnover can be visualized directly. We find that microtubules are generated in or near the cell body and continually transported distally as a coherent phase of polymer during axon elongation. This vectorial polymer movement was observed at all levels on the axon, even in the absence of axonal elongation. Measurements of the rate of polymer translocation at various places in the axon suggest that new polymer is formed by intercalary assembly along the axon and assembly at the growth cone in addition to transport of polymer from the cell body. Finally, polymer movement near the growth cone appeared to respond in a characteristic manner to growth cone behavior, while polymer proximally in the axon moved more consistently. These results suggest that microtubule translocation is the principal means of tubulin transport and that translocation plays an important role in generating new axon structure at the growth cone.  相似文献   

11.
Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.  相似文献   

12.
In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i). Whole‐cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP‐induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 487–501, 2013  相似文献   

13.
Cell adhesion is an essential prerequisite for cell function and movement. It depends strongly on focal adhesion complexes connecting the extracellular matrix to the actin cytoskeleton. Especially in moving cells focal adhesions are highly dynamic and believed to be formed closely behind the leading edge. Filopodia were thought to act mainly as guiding cues using their tip complexes for elongation. Here we show for keratinocytes a strong dependence of lamellipodial adhesion sites on filopodia. Upon stable contact of the VASP-containing tip spot to the substrate, a filopodial focal complex (filopodial FX) is formed right behind along the filopodia axis. These filopodial FXs are fully assembled, yet small adhesions containing all adhesion markers tested. Filopodial FXs when reached by the lamellipodium are just increased in size resulting in classical focal adhesions. At the same time most filopodia regain their elongation ability. Blocking filopodia inhibits development of new focal adhesions in the lamellipodium, while focal adhesion maturation in terms of vinculin exchange dynamics remains active. Our data therefore argue for a strong spatial and temporal dependence of focal adhesions on filopodial focal complexes in keratinocytes with filopodia not permanently initiated via new clustering of actin filaments to induce elongation.  相似文献   

14.
Axonal shortening and the mechanisms of axonal motility   总被引:1,自引:0,他引:1  
Axons in tissue culture retract and shorten if their tips are detached from the substrate. The shortening reaction of the axon involves contractile forces that also arise during normal axonal motility, elongation, and retraction. We studied shortening in axonal segments isolated from their parent axons by transecting the axon between the growth cone and the most distal point of adhesion to the substrate. Within 15-20 minutes after transection, an isolated axonal segment shortened and pulled its tail end toward the growth cone. During the shortening process, long sinusoidal bends arose along the axon. The identical shortening reaction occurs without transection, when the axon tip is detached from the substrate. Pharmacological studies with inhibitors of glycolysis indicate that the shortening mechanisms utilize metabolic energy, presumably ATP. The rate of sinusoidal shortening is similar to both the rate of polymer translocation in the axon by slow axonal transport and the rate of normal axonal elongation. Taxol inhibits the shortening reaction with a similar dose dependence to its inhibition of axonal growth. Together, all these observations suggest that the same basic intracellular motility mechanisms are involved in normal axonal growth, in slow axonal transport, and in the shortening reaction: the intracellular dynamic system that utilizes ATP to generate longitudinal movements of polymers within the axon may be the same mechanism underlying both the retraction and the elongation of the axon.  相似文献   

15.
Previous studies have demonstrated that the free intracellular calcium concentration ([Ca(2+)](i)) in growth cones can act as an important regulator of growth cone behavior. Here we investigated whether there is a spatial and temporal correlation between [Ca(2+)](i) and one particular aspect of growth cone behavior, namely the regulation of growth cone filopodia. Calcium was released from the caged compound NP-EGTA (o-nitrophenyl EGTA tetrapotassium salt) to simulate a signaling event in the form of a transient increase in [Ca(2+)](i). In three different experimental paradigms, we released calcium either globally (within an entire growth cone), regionally (within a small area of the lamellipodium), or locally (within a single filopodium). We demonstrate that global photolysis of NP-EGTA in growth cones caused a transient increase in [Ca(2+)](i) throughout the growth cone and elicited subsequent filopodial elongation that was restricted to the stimulated growth cone. Pharmacological blockage of either calmodulin or the Ca(2+)-dependent phosphatase, calcineurin, inhibited the effect of uncaging calcium, suggesting that these enzymes are acting downstream of calcium. Regional uncaging of calcium in the lamellipodium caused a regional increase in [Ca(2+)](i), but induced filopodial elongation on the entire growth cone. Elevation of [Ca(2+)](i) locally within an individual filopodium resulted in the elongation of only the stimulated filopodium. These findings suggest that the effect of an elevation of [Ca(2+)](i) on filopodial behavior depends on the spatial distribution of the calcium signal. In particular, calcium signals within filopodia can cause filopodial length changes that are likely a first step towards directed filopodial steering events seen during pathfinding in vivo.  相似文献   

16.
We seek to understand how the nerve growth cone acts as a sensory motile machine to respond to chemical cues in the developing embryo. This review focuses on filopodial protrusion and F-actin-based motility because there is good evidence that these processes are required for axon guidance. The clutch hypothesis, which states that filopodial protrusion occurs by actin assembly when an actin filament is fixed with respect to the substrate (i.e., a clutch is engaged), was postulated by Mitchison and Kirscher to link protrusion to actin dynamics. Protrusion would require functional modules for movement of material into filopodia, clutching the F-actin, F-actin assembly at the tip, and retrograde flow. In this review, recent studies of actin-associated proteins involved in filopodial protrusion will be summarized, and their roles will be assessed in the context of the clutch hypothesis. The large number of proteins involved in filopodial motility and their complex interactions make it difficult to understand how these proteins act in protrusion. Recently, we have used microscale chromophore-assisted laser inactivation (micro-CALI) for the focal and acute inactivation of specific actin-associated proteins during filopodial protrusion to address their in situ roles. Our findings suggest that myosin V functions in moving membranes or other material forward in extending filopodia, that talin acts in the clutch module, and that zyxin acts in actin assembly at the tip during filopodial protrusion, perhaps by recruiting Ena/VASP family members to promote actin elongation at this site.  相似文献   

17.
The filopodium     
The ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we deomonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared to filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this re-growth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.  相似文献   

18.
The ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we demonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared with filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this regrowth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.Key words: filopodia, lamellipodia, cell migration, fascin, adhesion, retrograde flow, actin polymerization  相似文献   

19.
The emergence of axonal filopodia is the first step in the formation of axon collateral branches. In vitro, axonal filopodia emerge from precursor cytoskeletal structures termed actin patches. However, nothing is known about the cytoskeletal dynamics of the axon leading to the formation of filopodia in the relevant tissue environment. In this study we investigated the role of the actin nucleating Arp2/3 complex in the formation of sensory axon actin patches, filopodia, and branches. By combining in ovo chicken embryo electroporation mediated gene delivery with a novel acute ex vivo spinal cord preparation, we demonstrate that actin patches form along sensory axons and give rise to filopodia in situ. Inhibition of Arp2/3 complex function in vitro and in vivo decreases the number of axonal filopodia. In vitro, Arp2/3 complex subunits and upstream regulators localize to actin patches. Analysis of the organization of actin filaments in actin patches using platinum replica electron microscopy reveals that patches consist of networks of actin filaments, and filaments in axonal filopodia exhibit an organization consistent with the Arp2/3-based convergent elongation mechanism. Nerve growth factor (NGF) promotes formation of axonal filopodia and branches through phosphoinositide 3-kinase (PI3K). Inhibition of the Arp2/3 complex impairs NGF/PI3K-induced formation of axonal actin patches, filopodia, and the formation of collateral branches. Collectively, these data reveal that the Arp2/3 complex contributes to the formation of axon collateral branches through its involvement in the formation of actin patches leading to the emergence of axonal filopodia.  相似文献   

20.
The guidance of nerve fibers depends on the constant protrusion, movement, and retraction (i.e., remodeling) of growth cone lamellae and filopodia. We used drugs that interfere with the dynamics of microtubules to investigate the role of microtubules in the remodeling of larval amphibian spinal cord neuronal growth cones. Vinblastine (8–100 nM), taxol (10 nM), and nocodazole (330 nM) altered microtubule distributions in growth cones and decreased the percentage of lamellar perimeter undergoing remodeling, while not affecting the rates of lamellar protrusion and retraction. Also, 8–20 nM vinblastine caused temporary losses of the continuity of the originally fan-shaped lamella, resulting in two or more lamellae at the growth cone. At higher concentrations of microtubule drugs, the originally fan-shaped lamella broke up into separate smaller lamellae followed by the centrifugal displacement from the base of the growth cone and eventual collapse of the resultant lamellae. Low doses of cytochalasin B prevented the centrifugal displacement of lamellae in response to microtubule drugs. During microtubule drug-mediated loss of growth cone lamellae, some filopodia were observed to elongate to greater than normal lengths. Similarly, exposure to 20 nM vinblastine resulted in an increase in filopodial length but not filopodial number. As evidenced by DiOC6(3) staining, 8–20 nM vinblastine altered the distribution of membranous organelles within growth cones, suggesting that the effects of microtubule drugs on growth cones may be mediated in part by alterations in organelle localization. Our data show that microtubules are involved in the maintenance and regulation of lamellar and filopodial structures at the neuronal growth cone. These findings have implications for the mechanisms by which growth cones are guided during development and regeneration. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 121–140, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号