首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fc receptors on the luminal membranes of intestinal epithelial cells in the neonatal rat mediate the vesicular transfer of functionally intact IgG from the intestinal lumen to the circulation. In addition, there is a low level of nonselective protein uptake, but in this case transfer does not occur. To determine whether a specialized class of endocytic vesicles could account for the selective transfer of IgG, mixtures of IgG conjugated to ferritin (IgG-Ft) and unconjugated horseradish peroxidase (HRP) were injected together into the proximal intestine of 10-d-old rats, and the cellular distribution of these two different tracers was determined by electron microscopy. Virtually all apical endocytic vesicles contained both tracers, indicating simultaneous uptake of both proteins within the same vesicle. However, only IgG-Ft bound to the apical plasma membrane, appeared within coated vesicles at the lateral cell surface, and was released from cells. HRP did not bind to the luminal membrane and was not transferred across cells but was confined to apical lysosomes as identified by acid phosphatase and aryl sulfatase activities. To test the possibility that the binding of IgG to its receptor stimulated endocytosis, HRP was used as a fluid volume tracer, and the amount of HRP taken up by cells in the presence and absence of IgG was measured morphologically and biochemically. The results demonstrate that endocytosis in these cells is constitutive and occurs at the same level in the absence of IgG. The evidence presented indicates that the principal selective mechanism for IgG transfer is the binding of IgG to its receptor during endocytosis. Continued binding to vesicle membranes appears to be required for successful transfer because unbound proteins are removed from the transport pathway before exocytosis. These results favor the proposal that IgG is transferred across cells as an IgG-receptor complex.  相似文献   

2.
Conjugates of horseradish peroxidase (HRP) and immunoglobulin G (IgG) were used to map the distribution of cell surface receptors that can bind IgG at 0 degrees C within the small intestine of 10-12-d-old rats. Luminal receptors are present only within the duodenum and proximal jejunum. In these locations, receptors are limited to absorptive cells that line the upper portion of individual villi. Near villus tips, receptors are relatively evenly distributed over the entire luminal plasmalemma. In the midregion of villi, receptors are unevenly distributed over the luminal surface. Receptors (a) specifically bind rat and rabbit IgG, (b) recognize the Fc portion of the immunoglobulins, and (c) bind at pH 6.0 but not pH 7.4. To determine whether IgG receptors are confined to the luminal portion of the plasmalemma, intact epithelial cells were isolated from the proximal intestine of 10-12-d-old rats and incubated with HRP conjugates at 0 degree C. The specific binding of rat IgG-HRP to cells at pH 6.0 indicates that IgG receptors, which are functionally similar to those found on the luminal surface, are also present over the entire abluminal surface of absorptive cells. These results are consistent with the transport of IgG to the abluminal plasma membrane in the form of IgG-receptor complexes on the surface of vesicles. Exposure of these complexes to the serosal plasma, which is presumably at pH 7.4, would cause release of IgG from the receptors. To assess possible inward movement of vesicles from the abluminal surface after discharge of IgG, intravenously injected HRP was used as a space-filling tracer in the serosal plasma. HRP could be visualized within the coated and tubular vesicles responsible for transport of IgG in the opposite direction. These vesicles may, therefore, provide a pathway whereby receptors shuttle between the luminal and abluminal surfaces of cells.  相似文献   

3.
Milk prolactin is transferred from the gastrointestinal tract to the circulation of the suckling rat. To identify the site of prolactin penetration and to determine the mechanism by which the hormone traverses the mucosal barrier, we followed the uptake of prolactin from ligated loops of jejunum or ileum in vivo by three methods: autoradiography, transport of prolactin-gold conjugates, and immunocytochemistry. Autoradiographic studies demonstrated specific binding sites for 125I-prolactin on apical membranes of the jejunum and ileum. Excess cold prolactin reduced radiolabel in apical and basal compartments. Gel autoradiography of portal sera showed the presence of intact prolactin and a prolactin fragment following jejunal transport but only a prolactin fragment following ileal transport. Uptake of prolactin-gold conjugates demonstrated that, in the jejunum, label was present at the luminal surface, within endosomal compartments and lysosomes, in basal coated and smooth vesicles, within basal coated pits, and beyond the basolateral surface. In the ileum, label was found at the luminal surface; within the tubulocisternae, endosomal vesicles, lysosomes, and basal smooth vesicles; and beyond the basolateral surface. Immunoreactive prolactin was present throughout the transepithelial pathways. This study demonstrates that prolactin is selectively and nonselectively absorbed in the jejunum and ileum and that the hormone is directed either to the lysosome for degradation or across the epithelium by means of a transcellular pathway.  相似文献   

4.
The absorbing capability of the choroidal epithelium in the third and the fourth ventricles of the teleost Leuciscus rutilus was studied by using the electron dense tracers lanthanum and peroxidase. The tracers were either injected into the third ventricle or applied onto the leptomeninx. Peroxidase was rapidly absorbed by coated vesicles after being injected into the ventricle. This reaction product was retained in multivesicular bodies which remained localized at the apical pole of the cell. However, when peroxidase was applied onto the leptomeninx only a limited uptake was observed. Lanthanum was not absorbed by the epithelial cells. The zonulae occludentes between two adjacent cells prevented the tracers from reaching the ventricular or vascular sides. Thus, the epithelium of the saccus dorsalis and the plexus choroideus posterior act as a barrier prohibiting the transport of these tracers from the blood to the cerebrospinal fluid or also in the reverse direction.  相似文献   

5.
We have used two electron microscopic tracers, asialoorosomucoid covalently coupled to horseradish peroxidase (ASOR-HRP) and lactosaminated ferritin (Lac-Fer), to investigate the internalization of proteins bound by the asialoprotein receptor of rat hepatocytes. Both ligands are cleared rapidly from the circulation of rats, are retarded in their clearance by an excess of ASOR and accumulate principally in the liver. Morphological examination of the livers of rats after injection of the probes confirmed that the hepatocyte is the principal liver cell involved in the clearance of galactose-terminating proteins. Internalization occurred via coated pits and coated vesicles of 1000 Å diameter. At 30 sec to 2 min the tracers began to accumulate in a complex arrangement of larger smooth-surfaced vesicles and tubular structures at the sinusoidal periphery of the cell. Fluid phase pinocytosis did not appear to account for any of the uptake into larger vesicles. The particulate tracer, Lac-Fer, was closely apposed to the membrane of coated pits and vesicles, but was found scattered throughout the lumen of the larger vesicles, possibly indicating dissociation of the ligand from its receptor. Although occasional lysosomes were detected cytochemically in the cell periphery, vesicles containing Lac-Fer showed no demonstrable aryl sulfatase activity. At 5 min, the tracers began to appear in Golgilysosome regions of the hepatocyte and were present in small vesicles of <2000 Å in diameter, larger irregular vesicles and tubules. Serial sectioning indicated that tubular structures in Golgi-lysosome regions were often interconnected to the larger vesicles, but that tubules in the peripheral cytoplasm were only occasionally connected to larger structures. Some of the Lac-Fer-containing vesicles in Golgi-lysosome areas at 15 min after injection were found to contain aryl sulfatase reaction product, indicating fusion with lysosomes.  相似文献   

6.
A morphometric analysis of coated and uncoated structures found in the apical portion of principal cells from both the proximal and distal caput epididymidis has been carried out. Almost all endocytic, coated vesicles are found within 1 micron of the luminal surface of principal cells and the volume fraction of these and of uncoated vesicles is much greater in the proximal caput epididymidis. A serial section analysis indicated that many coated "vesicles" are tangentially sectioned coated pits and that a complex network of interconnected vesicular and tubular structures exists in the apical cytoplasm. Efferent duct ligation has no effect on the number of size of large coated and uncoated vesicles in either the proximal or distal caput epididymidis, indicating that substances delivered to principal cells from the lumen are not required to maintain the endocytic machinery. However, this treatment does result in a considerable increase in the number of large coated vesicles associated with the basal surface of principal cells from the proximal but not the distal caput epididymidis. The volume fraction of small, presumably exocytic, coated vesicles is significantly greater in the apical cytoplasm of cells from the distal caput epididymidis in control animals. Efferent duct ligation results in a significant increase in the volume fraction of these vesicles in the proximal but not distal caput epididymidis. These results show that there are marked differences in structure among principal cells from these two regions of the epididymis and that this may reflect differences in control and function.  相似文献   

7.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

8.
The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO4, and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,1 GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20–45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.  相似文献   

9.
The absorptive cell of the suckling rat ileum is specialized for the uptake and digestion of milk macromolecules from the intestinal lumen. The apical cytoplasm contains an extensive tubulocisternal system, a variety of vesicles and multivesicular bodies (MVB), and a giant phagolysosomal vacuole where digestion is completed. To determine if sorting of membrane-bound and fluid-phase macromolecules occurs in this elaborate endocytic system, we infused adsorptive and soluble tracers into ligated intestinal loops in vivo and examined their fates. Lysosomal compartments were identified by acid phosphatase histochemistry. Native ferritin and two ferritin-lectin conjugates that do not bind to ileal membranes (Con A, UEAI) served as soluble tracers. Horseradish peroxidase binds to ileal membranes and thus was not useful as a fluid-phase tracer in this system. Cationized ferritin and a lectin that binds to terminal B-D-galactosyl sites on ileal membranes (Ricinus communis agglutinin [RCAI]-ferritin) were used as tracer ligands. All tracers entered the wide apical invaginations of the luminal cell surface and were transported intracellularly. Membrane-bound tracers were found in coated pits and vesicles, and throughout the tubulocisternal system (where cationized ferritin is released from the membrane) and later, in large clear vesicles and MVB. In contrast, fluid-phase tracers appeared within 5 min in vesicles of various sizes and were not transported through the tubulocisternae, rather, they were concentrated in a separate population of vesicles of increasing size that contained amorphous dense material. Large clear vesicles, large dense vesicles, and MVB eventually fused with the giant supranuclear vacuole. Acid phosphatase activity was present in MVB and in the giant vacuole but was not present in most large vesicles or in the tubulocisternae. These results demonstrate that membrane-bound and soluble protein are transported to a common lysosomal destination via separate intracellular routes involving several distinct prelysosomal compartments.  相似文献   

10.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel critical to intestinal anion secretion. In addition to phosphorylation, vesicle traffic regulates CFTR in some epithelial cells. Studies of cultured intestinal cells are conflicting regarding the role of cAMP-dependent vesicle traffic in regulating chloride transport. Whether CFTR is present in vesicular compartments within chloride secretory cells in the intestine is unknown and the role of cAMP-dependent vesicle insertion in regulating CFTR and intestinal fluid secretion remains unclear. The purpose of this study was to: (1) examine and quantify the subcellular distribution for CFTR in rat intestine, (2) further define the ultrastructure of the previously identified CFTR High Expresser (CHE) cell, and (3) examine the cellular distribution of CFTR following cAMP stimulation in vivo. Using the sensitive techniques of cryoimmunogold electron microscopy we identified CFTR in subapical vesicles and on the apical plasma membrane in crypt, Brunner glands, and CHE cells. cAMP stimulation in rat proximal small intestine produced a fluid secretory response and was associated with an apical redistribution of CFTR, supporting a physiologic role for cAMP-dependent CFTR vesicle insertion in regulating CFTR in the intestine.  相似文献   

12.
In order to elucidate the physiological function of extrahepatic bile duct cells, we isolated epithelial cells from the rat extrahepatic bile duct by digesting resected segments of the extrahepatic bile duct with 0.15% trypsin in ice-cold Ca(2+)-free Hanks' balanced salt solution supplemented with 0.25 mM EDTA overnight. As a result, the epithelial cells were collected as aggregates and attached to culture dishes coated with type I collagen. Approximately 95% of the cells cultured for 24 hrs were found to be positive for gamma-glutamyl transpeptidase and cytokeratin-19, but negative for vimentin. These characteristics were identical to the features of rat extrahepatic biliary epithelial cells in situ. Ultrastructurally, the cells were long and columnar in configuration on the 2nd day in culture, and possessed numerous microvilli at the apical surface and well-developed junctional complexes at the lateral surface. These findings also indicate that the cells maintain an epithelial nature and are morphologically polarized. When the cells were exposed to a low dose of horseradish peroxidase (HRP) on the 2nd day in culture, which was followed by fixation and treatment with 3-3'-diaminobenzidine, HRP was found preferentially in the cytoplasmic vesicles near the apical surface. HRP was then observed in the intercellular spaces; however, the electron-dense tracer, ruthenium red, did not permeate into the intercellular spaces, and HRP was found in neither cytoplasms nor intercellular spaces when the cells were incubated in HRP-containing medium at 4 degrees C for 30 min. These results suggest that the extrahepatic bile duct epithelial cells are involved in the reabsorption of bile constituents.  相似文献   

13.
《The Journal of cell biology》1990,111(3):1305-1311
Microsomal membrane vesicles prepared either from chicken medullary bone or isolated osteoclasts were shown to have ATP-dependent H(+)- transport activity. This activity was N-ethylmaleimide-sensitive but resistant to oligomycin and orthovanadate, suggesting a vacuolar-type ATPase. Furthermore, immunological cross-reactivity of 60- and 70-kD osteoclast membrane antigens with Neurospora crassa vacuolar ATPase was observed when analyzed by immunoblotting. Same antibodies labeled only osteoclasts in chicken and rat bone in immunohistochemistry. Immunoelectronmicroscopy localized these antigens in apical membranes of rat osteoclasts and kidney intercalated cells of inner stripe of outer medulla. Pretreatment of animals with parathyroid hormone enhanced the immunoreaction in the apical membranes of osteoclasts. No immunoreaction was seen in osteoclasts when antibodies against gastric H+,K(+)-ATPase were used. These results suggest that osteoclast resorbs bone by secreting protons through vacuolar H(+)-ATPase.  相似文献   

14.
Pyroantimonate precipitate indicates that the epithelium of the proximal tubule is the only segment of the tubular nephron of the fresh water lamprey where large accumlations of cations are distributed. Unusually large amounts of reaction product are located within the lateral intercellular spaces and within vesicles closely associated with the plasma membrane at the lateral and basal surfaces. This technique suggests the continuity of these vesicles with the plasma membrane and alludes to the possibility of an endomembranous system of vesicles and the intercellular spaces as vehicles for ion transport. Lateral intercellular spaces of proximal tubules of lower vertebrates may play a different role in kidney function that their counterparts in higher vertebrates. Osmium-zinc iodide has a specificity for certain cells within the proximal, intermediate, and distal segments, but no structural differences are noted when these cells are compared to unstained cells. Smooth endoplasmic reticulum remains unstained in the distal segment but the stain has a strong affinity for elements of the Golgi apparatus, lysosomes, and the nuclear envelope of all cell types. This technique does not suggest a structural or functional similarity between cells of the distal segment and the chloride cells of the gills of teleosts.  相似文献   

15.
Jarial MS 《Tissue & cell》1992,24(1):139-155
The rectal pads of Schistocerca gregaria are composed of three different cell types: epithelial, secondary and junctional cells. The rectal pads are interconnected by simple rectal cells and both are lined internally by a articular intima. The epithelial cells exhibit extensive infoldings of the apical plasma membranes that are closely associated with mitochondria. Their lateral plasma membranes are highly folded around large mitochondria and enclose intercellular channels and spaces. They are united by belt and spot desmosomes, septate junctions, gap junctions and scalariform junctions, but terminate in a basal syncytium without contacting the basal plasma membranes. The apical and basal cytoplasm contain coated vesicles, dense tubular elements, multivesicular bodies and lysosomes, suggesting receptor-mediated endocytosis of small peptide molecules into the epithelial cells. The apical membrane infoldings of the secondary cells are also associated with large mitochondria. Their basal plasma membranes are covered by connective cell processes and connected with them by spot desmosomes which may be involved in solute recycling. The presence of neurosecretory-like axons near the secondary cells suggests that they exert local control on the function of these cells. The ultrastructural details are examined in relation to their role in solute and water transport.  相似文献   

16.
In parotid acinar cells, horseradish peroxidase (HRP) administered via the main excretory duct is endocytosed from the apical cell surface in smooth C- or ring-shaped vesicles (Oliver, C. and A. R. Hand. 1979. J. Cell Biol. 76:207). These vesicles ultimately fuse with lysosomes adjacent to the Golgi apparatus. The present investigation extends these findings and examines the uptake and fate of intravenously injected HRP from the lateral and basal cell surfaces of resting and stimulated parotid and pancreatic acinar cells from rats and mice. Isoproterenol and pilocarpine were used to stimulate the parotid gland and the pancreas, respectively. HRP was internalized in smooth and coated vesicles primarily in areas of membrane infoldings. Both the number of coated vesicles and the amount of tracer internalized increased markedly following secretagogue administration. In both resting and stimulated cells, the HRP was rapidly sequestered in a unique system of basally located lysosomes that possess trimetaphosphatase activity, but not acid phosphatase activity. At 1-3 h after HRP administration, reaction product was also found in multivesicular bodies, vesicles, and lysosomes adjacent to the Golgi apparatus. With time, more HRP was localized in Golgi-associated lysosomes. By 6-7 h, tubules in the apical cytoplasm of stimulated cells contained HRP reaction product. When native ferritin was administered retrogradely and HRP injected intravenously, both tracers could be localized in the same lysosome after 4-5 h, indicating that material taken in from all cell surfaces mixes in Golgi-associated lysosomes. The results of this study suggest that two separate and distinct endocytic pathways exist in exocrine acinar cells: one involves membrane retrieval from the apical cell surface; and the other is a stimulation-dependent process at the lateral and basal cell surfaces.  相似文献   

17.
Summary Rabbit yolk sac splanchnopleur exposed in utero to IgG-HRP and IgG-ferritin conjugates, rabbit and bovine anti-HRP antibodies, free HRP, ferritin and human IgG, was examined ultrastructurally in an attempt to determine whether or not coated micropinocytotic vesicles are involved in selectively transporting immunoglobulins across yolk sac endodermal cells. Human, rabbit and bovine IgG-HRP conjugates, rabbit anti-HRP antibodies, free HRP and human IgG, all become localised in coated micropinocytotic vesicles. Differences were observed in that only human IgG and rabbit anti-HRP antibodies could be located in the intercellular space and bovine IgG-HRP conjugate could not be detected in coated micropinocytotic vesicles in confluence with the lateral and basal plasmalemma. Bovine anti-HRP antibodies, IgG-ferritin conjugates, and free ferritin, could not be observed in coated micropinocytotic vesicles. All proteins were detected in macropinocytotic vesicles, and dense bodies resembling phagolysosomes. Results are discussed in the light of a proposal that selection occurs at the cell surface during formation of coated micropinocytotic vesicles and is not linked to intracellular proteolysis.Supported by an award from the Medical Research Council, to whom grateful acknowledgement is made  相似文献   

18.
We have localized horseradish peroxidase (HRP) in the mouse uterus after intravenous administration on days 1 and 5 of pregnancy in an effort to understand how serum proteins reach the uterine lumen. Direct movement of HRP into uterine and glandular lumina was blocked by the epithelial tight junctions on both days. In luminal and glandular epithelial cells at both times, HRP was localized in endocytic vesicles along the basolateral membranes, multivesicular bodies (mvb), elongated dense bodies below the nucleus (bdb), and many small vesicles near the apical surface of the cells. The uptake of HRP was most extensive in the luminal epithelium on day 1: the number of tracer-containing apical vesicles and bdb was largest, and there were also clusters of vesicles containing the tracer above the nucleus. Acid phosphatase was localized on day 1 in mvb and bdb in both cell types, indicating that these structures are lysosomes. It appeared that HRP followed two pathways after basolateral endocytosis by the epithelial cells: it was transported to the apical region of the cells, where it was present in small vesicles that may release their contents into the uterine or glandular lumina, or it was transported to lysosomes. To investigate whether macromolecules may be transported from the uterine lumen to the stroma, we also studied endocytosis at the apical pole of luminal epithelial cells after intraluminal injection of HRP. There was no detectable uptake of HRP from the lumen on day 1, and no tracer was detected in the intercellular spaces or basement membrane region. On day 5, a large amount of HRP was taken up from the lumen into apical endocytic vesicles, mvb, and dense bodies, but tracer was not present in the Golgi apparatus, lateral intercellular spaces, or the basement membrane region at the times studied. These observations indicate that there was no transport of luminal macromolecules to the uterine stroma on day 1, while the possibility of transport on day 5 requires further study.  相似文献   

19.
Proximal convoluted, proximal straight, and cortical collecting tubular segments isolated from rabbit kidney were perfused with I 125-labeled rabbit serum albumin (RSA-I 125) in ultrafiltrate of serum for up to 3 hr After perfusion, the segments were fixed with glutaraldehyde, embedded in Epon, and either counted with a gamma spectrometer to quantitate protein accumulation or analyzed by electron microscope radioautography to sequentially localize radioactivity Proximal convoluted and proximal straight segments accumulate RSA-I 125 nearly linearly as a function of time whereas cortical collecting segments do not accumulate measurable amounts of protein. The rate of accumulation of RSA-I 125 in the proximal convoluted tubule is 2 6 times as great as that in the proximal straight tubule. Electron microscope radioautography of the isolated proximal tubule demonstrated that RSA-I 125 is taken up via small apical vesicles and tubular invaginations, released into large cytoplasmic vacuoles, and finally concentrated in membrane-bounded structures, some of which are acid phosphatase positive These results show that albumin is absorbed by proximal tubules and may be degraded intracellularly within lysosomes. In addition, less radioactivity was located at all times over the lateral intercellular and basilar labyrinthine spaces, suggesting that labeled albumin and/or its breakdown products may be transported across the peritubular cell membrane.  相似文献   

20.
Transcytosis in thyroid follicle cells   总被引:14,自引:6,他引:8       下载免费PDF全文
Inside-out follicles prepared from pig thyroid glands were used for studies on endocytosis. endocytosis. In this in vitro system, only the apical plasma membranes of follicle cells were exposed to tracers added to the culture medium. Cationized ferritin (CF) bound to the apical plasma membrane and was transferred first to endosomes and to lysosomes (within 5 min). Later, after approximately 30 min, CF was also found in stacked Golgi cisternae. In addition, a small fraction of endocytic vesicles carrying CF particles became inserted into the lateral (at approximately 11 min) and the basal (at approximately 16 min) plasma membranes. Morphometric evaluation of CF adhering to the basolateral cell surfaces showed that the vesicular transport across thyroid follicle cells (transcytosis) was temperature-sensitive; it ceased at 15 degrees C but increased about ninefold in follicles stimulated with thyrotropin (TSH). Thyroglobulin-gold conjugates and [3H]thyroglobulin (synthesized in separate follicle preparations in the presence of [3H]leucine) were absorbed to the apical plasma membrane and detected mainly in lysosomes. A small fraction was also transported to the basolateral cell surfaces where the thyroglobulin preparations detached and accumulated in the newly formed central cavity. As in the case of CF, transcytosis of thyroglobulin depended on the stimulation of follicles with TSH. The observations showed that a transepithelial vesicular transport operates in thyroid follicle cells. This transport is regulated by TSH and includes the transfer of thyroglobulin from the apical to the basolateral plasma membranes. Transcytosis of thyroglobulin could explain the occurrence of intact thyroglobulin in the circulation of man and several mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号