首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Disturbance of apoptosis is an established factor in tumorigenesis. The role of apoptosis in tumor progression is not yet clear. In the present study we compared the tendency to spontaneous apoptosis (and the proliferative capacity) of tumor cells derived from primary (PT) and metastatic tumor (MT) cells of several AKR lymphoma variants. Apoptosis-related gene expression was also compared. Our results indicate that release from apoptosis has a role in the tumor progression of this T cell lymphoma. At the cellular level, a markedly lower apoptotic tendency was observed in MT than in PT cells. The existence of macrophages only in PT also supports the presence of apoptotic cells in local but not in MTs. By contrast, proliferative capacity does not determine tumor aggressiveness in this system. At the molecular level, we found a higher staining intensity for bcl-2 in MT than in PT cells, suggesting that bcl-2 might be responsible for the reduced apoptosis in MT compared to PT cells. Evidence for p53 overexpression was found in the MT cells of one of the variants but in none of the PT. Comparison of Fas receptor, unexpectedly showed an increased expression in MT versus PT cells, possibly indicating resistance to Fas-induced apoptosis in the MT cells.  相似文献   

3.
Inactivation of the cellular p53 gene is a common feature of Friend virus-induced murine erythroleukemia cell lines and may represent a necessary step in the progression of this disease. As well, frequent loss or mutation of p53 alleles in diverse human tumors is consistent with the view of p53 as a tumor suppressor gene. To examine the significance of p53 gene inactivation in tumorigenesis, we have attempted to express transfected wild-type p53 in three p53-negative tumor cell lines: murine DP16-1 Friend erythroleukemia cells, human K562 cells, and SKOV-3 cells. We found that aberrant p53 proteins, which differ from wild-type p53 by a single amino acid substitution, were expressed stably in these cells, whereas wild-type p53 expression was not tolerated. The inability of p53-negative tumor cell lines to support long-term expression of wild-type p53 protein is consistent with the view that p53 is a tumor suppressor gene.  相似文献   

4.
5.
The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.  相似文献   

6.
7.
The scaffold protein spinophilin (SPN) is a regulatory subunit of phosphatase 1a (PP1a) located at 17q21.33. This region is frequently associated with microsatellite instability and LOH and contains a relatively high density of known tumor suppressor genes, and several unidentified candidate tumor suppressor genes located distal to BRCA1. Spn is located in this locus and proposed to be a new tumor suppressor. Loss of Spn induces a proliferative response by increasing pRb phosphorylation, which in turn activates p53, thereby, neutralizing the proliferative response. The absence of p53 bypasses this barrier and enhances the malignant phenotype. Furthermore, the ectopic expression of SPN in human tumor cells from different types of malignancies greatly reduced cell growth. Spn knock-out mice had decreased lifespan with increased cellular proliferation in tissues such as the mammary ducts and early appearance of tumors. Furthermore, the combined loss of Spn and mutant p53 activity led to increased mammary carcinomas, confirming the functional relationship between p53 and Spn. In human tumors, Spn is absent in 20% and reduced in another 37% of human lung tumors. Spn reduction correlates with malignant grade and p53 mutations. Furthermore, Spn mRNA is lost in a percentage of renal carcinomas and lung adenocarcinomas. Finally, lower levels of Spn mRNA correlate with higher grade of ovarian carcinoma and chronic myelogenous leukemia. Therefore, Spn may be the tumor suppressor gene that is located at 17q21.33 and that its tumor suppressive function is dependent on the absence of p53.  相似文献   

8.
In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53-HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.  相似文献   

9.
The metallothionein (MT) expression was studied in the hematopoietic precursor cell line K-562, after serum deprivation and reconstitution of the cells in medium with 10% (v/v) FCS. Serum deprivation for 72 h markedly downregulated the MT mRNA expression, only the isoforms most abundant in normal K-562 cells were clearly detectable. Within 1-1.5 h after serum supplementation however, a definite induction of MT mRNA was noticed, and all isoforms were induced. Forty-eight hours after serum stimulation, the MT mRNA expression of all isoforms decreased again. Also MT protein levels increased twofold 24 h after serum stimulation. These results suggest that MT has a function in the re-entry of resting cells into the cell cycle, this function however could not be assigned to a specific MT isoform. The induction of MT after serum stimulation was independent of protein synthesis, but dependent on phosphorylation.  相似文献   

10.
11.
12.
Significance of metallothionein expression in breast myoepithelial cells   总被引:6,自引:0,他引:6  
  相似文献   

13.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and play critical roles in tissue repair, tumor invasion, and metastasis. MMPs are regulated by different cytokines, ECM proteins, and other factors. However, the molecular mechanisms by which osteopontin (OPN), an ECM protein, regulates ECM invasion and tumor growth and modulates MMP activation in B16F10 cells are not well defined. We have purified OPN from human milk and shown that OPN induces pro-MMP-2 production and activation in these cells. Moreover, our data revealed that OPN-induced membrane type 1 (MT1) MMP expression correlates with translocation of p65 (nuclear factor-kappaB (NF-kappaB)) into the nucleus. However, when the super-repressor form of IkappaBalpha (inhibitor of NF-kappaB) was transfected into cells followed by treatment with OPN, no induction of MT1-MMP expression was observed, indicating that OPN activates pro-MMP-2 via an NF-kappaB-mediated pathway. OPN also enhanced cell migration and ECM invasion by interacting with alpha(v)beta(3) integrin, but these effects were reduced drastically when the MMP-2-specific antisense S-oligonucleotide was used to suppress MMP-2 expression. Interestingly, when the OPN-treated cells were injected into nude mice, the mice developed larger tumors, and the MMP-2 levels in the tumors were significantly higher than in controls. The proliferation data indicate that OPN increases the growth rate in these cells. Both tumor size and MMP-2 expression were reduced dramatically when anti-MMP-2 antibody or antisense S-oligonucleotide-transfected cells were injected into the nude mice. To our knowledge, this is the first report that MMP-2 plays a direct role in OPN-induced cell migration, invasion, and tumor growth and that demonstrates that OPN-stimulated MMP-2 activation occurs through NF-kappaB-mediated induction of MT1-MMP.  相似文献   

14.
15.
16.
The recently identified p53 family member, p73, shows substantial structural and functional homology with p53. However, despite the established role of p53 as a proto-type tumor suppressor, a similar function of p73 in malignancy is questionable. Overexpression of p73 can activate typical p53-responsive genes, and activation of p73 has been implicated in apoptotic cell death induced by aberrant cell proliferation and some forms of DNA-damage. These data together with the localization of TP73 on chromosome 1p36, a region frequently deleted in a variety of human tumors, led to the hypothesis that p73 has tumor suppressor activity just like p53. However, unlike p53-/- mice, p73 knockout mice do not develop tumors. Extensive studies on primary tumor tissues have revealed overexpression of wild-type p73 in the absence of p73 mutations instead, suggesting that p73 may augment, rather than inhibit tumor development. In contrast to p53, differential splicing of the TP73 gene locus gives rise to a complex pattern of interacting p73 isoforms with antagonistic functions. In fact, induction of apoptosis by increased levels of p73 can be blocked by both p53 mutants and the N-terminally truncated p73 isoforms, which were recently shown to possess oncogenic potential. In the light of these new findings the contradictory role of p73 in malignancy will be discussed.  相似文献   

17.
18.
19.
BACKGROUND: Metallothionein (MT) protein expression deficiency has been implicated in carcinogenesis while MT over expression in tumors is indicative of tumor resistance to anti-cancer treatment. The purpose of the study was to examine the expression of MT expression in human renal cell carcinoma (RCC) and to correlate MT positivity, the pattern and extent of MT expression with tumor histologic cell type and nuclear grade, pathologic stage and patients' survival. PATIENTS AND METHODS: The immunohistochemical expression of MT was determined in 43 formalin-fixed and paraffin-embedded RCC specimens, using a mouse monoclonal antibody that reacts with both human MT-I and MT-II. Correlation was sought between immunohistochemical (MT positivity, intensity and extension of staining) and clinico-pathological data (histological cell type, tumor nuclear grade, pathologic stage and patients' survival). RESULTS: Positive MT staining was present in 21 cases (49%), being mild/moderate and intense in 8 and 13 cases, respectively. The pattern was cytoplasmic in 7 cases and was both cytoplasmic and nuclear in 14 cases. MT expression in a percentage of up to 25% of tumor cells (negative MT staining included) was observed in 31 cases, in a percentage 25-50% of tumor cells in 7 cases, and in a percentage of 50-75% of tumor cells in 5 cases. There was no significant correlation of MT intensity of staining to histological type, stage and patients' survival, while it was inversely correlated to higher tumor nuclear grade. MT extent of staining did not correlate with histological type, nuclear grade, and pathologic stage while a statistically significant association was found with patients' survival. CONCLUSIONS: The inverse correlation between MT staining intensity and tumor nuclear grade in RCC suggests a role of MT in tumor differentiation process. Since extent of MT expression is inversely correlated with survival it may be possibly used as a clinical prognostic parameter.  相似文献   

20.
Heat shock proteins (HSPs) are thought to play a role in the development of cancer and to modulate tumor response to cytotoxic therapy. In this study, we have examined the expression of hsf and HSP genes in normal human prostate epithelial cells and a range of prostate carcinoma cell lines derived from human tumors. We have observed elevated expressions of HSF1, HSP60, and HSP70 in the aggressively malignant cell lines PC-3, DU-145, and CA-HPV-10. Elevated HSP expression in cancer cell lines appeared to be regulated at the post-messenger ribonucleic acid (mRNA) levels, as indicated by gene chip microarray studies, which indicated little difference in heat shock factor (HSF) or HSP mRNA expression between the normal and malignant prostate cell lines. When we compared the expression patterns of constitutive HSP genes between PC-3 prostate carcinoma cells growing as monolayers in vitro and as tumor xenografts growing in nude mice in vivo, we found a marked reduction in expression of a wide spectrum of the HSPs in PC-3 tumors. This decreased HSP expression pattern in tumors may underlie the increased sensitivity to heat shock of PC-3 tumors. However, the induction by heat shock of HSP genes was not markedly altered by growth in the tumor microenvironment, and HSP40, HSP70, and HSP110 were expressed abundantly after stress in each growth condition. Our experiments indicate therefore that HSF and HSP levels are elevated in the more highly malignant prostate carcinoma cells and also show the dominant nature of the heat shock-induced gene expression, leading to abundant HSP induction in vitro or in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号