首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The bacterial chromosome is a highly compacted nucleoproteic structure. Its apparent disordered morphology is difficult to conciliate with newly discovered mechanisms governing the propagation of genetic information between mother and daughter cells. Recent experiments in bacterial genetics, biochemistry and cytology from a number of laboratories are beginning to unravel how at each cell division, DNA replication and segregation proteins interact spatially with specific DNA motifs to orchestrate replication and movement of replication forks and chromosomes. We propose here a method to confirm and perhaps extend these experiments by in silico protein sequence comparisons and phylogeny. This analysis showed a parallel evolution between the histone-like protein HU and key protein factors involved in DNA replication and chromosome segregation.  相似文献   

2.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

3.
The bacterial nucleoid: a highly organized and dynamic structure   总被引:1,自引:0,他引:1  
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.  相似文献   

4.
Mutations in DNA replication initiator genes in both prokaryotes and eukaryotes lead to a pleiotropic array of phenotypes, including defects in chromosome segregation, cytokinesis, cell cycle regulation and gene expression. For years, it was not clear whether these diverse effects were indirect consequences of perturbed DNA replication, or whether they indicated that DNA replication initiator proteins had roles beyond their activity in initiating DNA synthesis. Recent work from a range of organisms has demonstrated that DNA replication initiator proteins play direct roles in many cellular processes, often functioning to coordinate the initiation of DNA replication with essential cell-cycle activities. The aim of this review is to highlight these new findings, focusing on the pathways and mechanisms utilized by DNA replication initiator proteins to carry out a diverse array of cellular functions.  相似文献   

5.
It is now clear that bacterial chromosomes rapidly separate in a manner independent of cell elongation, suggesting the existence of a mitotic apparatus in bacteria. Recent studies of bacterial cells reveal filamentous structures similar to the eukaryotic cytoskeleton, proteins that mediate polar chromosome anchoring during Bacillus subtilis sporulation, and SMC interacting proteins that are involved in chromosome condensation. A picture is thereby developing of how bacterial chromosomes are organized within the cell, how they are separated following duplication, and how these processes are coordinated with the cell cycle.  相似文献   

6.
FtsK, a literate chromosome segregation machine   总被引:6,自引:3,他引:3  
  相似文献   

7.
DNA translocases play important roles during the bacterial cell cycle and in cell differentiation. Escherichia coli cells contain a multifunctional translocase, FtsK, which is involved in cell division, late steps of chromosome segregation and dimer resolution. In Gram-positive bacteria, the latter two processes are achieved by two translocases, SftA and SpoIIIE. These two translocases operate in a two step fashion, before and after closure of the division septum. DNA translocases have the remarkable ability to translocate DNA in a vectorial manner, orienting themselves according to polar sequences present in bacterial genomes, and perform various additional roles during the cell cycle. DNA translocases genetically interact with Structural Maintenance of Chromosomes (SMC) proteins in a flexible manner in different species, underlining the high versatility of this class of proteins.  相似文献   

8.
The ability to visualise specific genes and proteins within bacterial cells is revolutionising knowledge of chromosome segregation. The essential elements appear to be the driving force behind DNA replication, which occurs at fixed cellular positions, the condensation of newly replicated DNA by a chromosome condensation machine located at the cell 1/4 and 3/4 positions, and molecular machines that act at midcell to allow chromosome separation after replication and movement of the sister chromosomes away from the division septum prior to cell division. This review attempts to provide a perspective on current views of the bacterial chromosome segregation mechanism and how it relates to other cellular processes.  相似文献   

9.
Genome stability requires correct chromosome segregation and DNA repair. Failure of these processes leads to cell death or accumulation of chromosomal aberrations, as often observed in tumor cells. An increasing number of observations indicate that segregation and DNA double-strand break (DSB) repair are functionally connected by the Cohesin and Smc5/6 protein complexes. Through their interaction with the duplicated genome, these complexes play essential roles in both chromosome segregation and repair by sister chromatid recombination. Both are also recruited to DSBs, and their chromosomal association is similarly regulated. Interestingly, recent studies of Cohesin suggest that DSB formation could promote proper mitotic chromosome segregation. This is reminiscent of segregation in meiotic cells, which is facilitated by break-induced chromosomal tethering.  相似文献   

10.
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.The transport of DNA across membranes by bacteria occurs during sporulation, during cytokinesis, directly from other cells and from the environment. This review addresses the question “how is the DNA polyanion transferred processively across the hydrophobic membrane barrier”?DNA transport must occur through water-filled channels, at least conceptually addressing the problem posed by the hydrophobic membrane. DNA transporters presumably use metabolic energy directly or a coupled-flow (symporter or antiporter) mechanism to drive DNA processively through the channel. It is possible that a Brownian ratchet mechanism, in which directionality is imposed on a diffusive process, also contributes to transport.In this article, we will consider several DNA transport systems. We will begin with the simplest one, namely the FtsK/SpoIIIE system that is involved in cell division and sporulation. We will then turn to the more complex, multiprotein DNA uptake systems that accomplish genetic transformation (the uptake of environmental DNA from the environment) and the conjugation systems of Gram-negative bacteria that mediate the unidirectional transfer of DNA between cells. In each case we will discuss the proteins involved, their actions and the sources of energy that drive transport. Space limitations prevent discussion of other relevant topics, such as DNA transport during bacteriophage infection and more than a brief reference to conjugation in Gram-positive bacteria.  相似文献   

11.
The concept that the bacterial membrane plays an active role in the regulation of DNA replication and in segregation, or 'partition', of the bacterial chromosome at cell division was proposed in 1963. Membrane participation offered a relatively simple way to coordinate replication and partition. Some of the details of this model have been confirmed, while others have been changed. In fact, it appears that the membrane may play several distinct roles in these processes, and recent experiments have begun to identify the complexity of membrane involvement.  相似文献   

12.
13.
Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.  相似文献   

14.
Bacteria use the global bipolarization of their chromosomes into replichores to control the dynamics and segregation of their genome during the cell cycle. This involves the control of protein activities by recognition of specific short DNA motifs whose orientation along the chromosome is highly skewed. The KOPS motifs act in chromosome segregation by orienting the activity of the FtsK DNA translocase towards the terminal replichore junction. KOPS motifs have been identified in γ-Proteobacteria and in Bacillus subtilis as closely related G-rich octamers. We have identified the KOPS motif of Lactococcus lactis, a model bacteria of the Streptococcaceae family harbouring a compact and low GC% genome. This motif, 5'-GAAGAAG-3, was predicted in silico using the occurrence and skew characteristics of known KOPS motifs. We show that it is specifically recognized by L. lactis FtsK in vitro and controls its activity in vivo. L. lactis KOPS is thus an A-rich heptamer motif. Our results show that KOPS-controlled chromosome segregation is conserved in Streptococcaceae but that KOPS may show important variation in sequence and length between bacterial families. This suggests that FtsK adapts to its host genome by selecting motifs with convenient occurrence frequencies and orientation skews to orient its activity.  相似文献   

15.
Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism.  相似文献   

16.
Origin inactivation in bacterial DNA replication control   总被引:1,自引:0,他引:1  
Initiation of DNA replication is a highly regulated process in all organisms. Proteins that are required to recruit DNA polymerase - initiator proteins - are often used to regulate the timing or frequency of initiation in the cell cycle by limiting either their own synthesis or availability. Studies of the Escherichia coli chromosome and of bacterial plasmids with iterated initiator binding sites (iterons) have revealed that, in addition to initiator limitation, replication origin inactivation is used to prevent replication that is untimely or excessive. Our recent studies of plasmid P1 revealed that this additional mode of control becomes a requirement when initiator availability is limited only by autoregulation. Thus, although initiator limitation appears to be a well-conserved and central mode of replication control, optimal replication might require additional control mechanisms. This review gives examples of how the multiple mechanisms can act synergistically, antagonistically or be partially redundant to guarantee low frequency events. The lessons learned are likely to help understand many other regulatory systems in the bacterial cell.  相似文献   

17.
Bacterial mitotic machineries   总被引:15,自引:0,他引:15  
Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the ParM protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.  相似文献   

18.
Genome replication is a fundamental requirement for the proliferation of all cells. Throughout the domains of life, conserved DNA replication initiation proteins assemble at specific chromosomal loci termed replication origins and direct loading of replicative helicases (1). Despite decades of study on bacterial replication, the diversity of bacterial chromosome origin architecture has confounded the search for molecular mechanisms directing the initiation process. Recently a basal system for opening a bacterial chromosome origin (oriC) was proposed (2). In the model organism Bacillus subtilis, a pair of double-stranded DNA (dsDNA) binding sites (DnaA‐boxes) guide the replication initiator DnaA onto adjacent single-stranded DNA (ssDNA) binding motifs (DnaA‐trios) where the protein assembles into an oligomer that stretches DNA to promote origin unwinding. We report here that these core elements are predicted to be present in the majority of bacterial chromosome origins. Moreover, we find that the principle activities of the origin unwinding system are conserved in vitro and in vivo. The results suggest that this basal mechanism for oriC unwinding is broadly functionally conserved and therefore may represent an ancestral system to open bacterial chromosome origins.  相似文献   

19.
The bacterial genome is folded into a compact structure called the nucleoid. Considerable compaction of the DNA molecule is required in order to reduce its volume below that of the cell. Several mechanisms, such as molecular crowding and DNA supercoiling contribute to the compactness of the nucleoid. Besides these mechanisms, a number of architectural proteins associate with the chromosomal DNA and cause it to fold into a compact structure by bridging, bending or wrapping DNA. In this review, we provide an overview of the major nucleoid-associated proteins from a structural perspective and we discuss their possible roles in dynamically shaping the bacterial nucleoid.  相似文献   

20.
The homeodomain is one of the most important eukaryotic DNA-binding motifs and has been identified in over one thousand proteins. Homeodomain proteins play critical roles in diverse biological processes, including cell differentiation and cell pattern formation. The human Pitx2 homeodomain binds several different DNA sequences and is a pivotal component of both the TGF-β and Wnt/β-catenin signaling pathways. As the recognition of specific DNA sequences represents an essential biochemical function of all DNA-binding proteins, we have chosen the Pitx2 homeodomain model to investigate the mechanisms that convey biological specificity in these protein-DNA interactions. Here, we report complete chemical shift assignments of the human Pitx2 homeodomain and the R24H mutation that induces ring dermoid of the cornea syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号