首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of treatment with phenobarbital, 3-methylcholanthrene or polychlorinated biphenyls (PCB) on the amounts of sex-specific forms of cytochrome P-450, namely P-450-male and P-450-female, in male and female rats were studied. Although treatment with phenobarbital, 3-methylcholanthrene or PCB markedly increased the total amount of hepatic cytochrome P-450, P-450-male and P-450-female were rather decreased or not significantly changed. Thus, the percentages of P-450-male and P-450-female in the total cytochrome P-450 were decreased in liver microsomes from the treated rats. The increases in specific cytochrome P-450, such as P-448-H, P-448-L, and P-450I-c accounted for the increase in the total amount of cytochrome P-450 in the treated rats. The treatment with phenobarbital or PCB increased the activities of testosterone 16 alpha-hydroxylase, benzo(a)pyrene hydroxylase and aminopyrine N-demethylase more markedly in female rats than in male rats. Similarly, the treatment with 3-methylcholanthrene increased benzo(a)pyrene hydroxylase more markedly in female rats. Therefore, the sex-differences in testosterone 16 alpha-hydroxylase, benzo(a)pyrene hydroxylase, and aminopyrine N-demethylase activities became smaller after the drug treatment. These results indicate that sex-specific P-450-male and P-450-female were unaffected, or even depressed by the agents in some cases.  相似文献   

2.
Feeding of vitamin A-deficient diet to male weanling rats for 10 weeks resulted in significant decrease in the body weight and marked reduction in the hepatic vitamin A content. The levels of hepatic phase I microsomal enzymes cytochrome P-450, cytochrome b5, aminopyrine N-demethylase and arylhydrocarbon hydroxylase were found to be substantially reduced by vitamin A-deficiency. Also, the activity of phase II microsomal UDP - glucuronyl transferase enzyme was significantly decreased in deficient animals. Following repeated oral administration of DDT (15 mg/kg/body wt/day) for 21 days, the phase I microsomal enzymes were induced to a greater extent in controls as compared to deficient animals. UDP - glucuronyltransferase remained insensitive to DDT induction. The results imply that the capacity for induction of the hepatic mixed-function oxidase enzyme system is impaired in deficient animals concurrently exposed to DDT.  相似文献   

3.
4-Chlorophenol (4-CP) is an identified trace contaminant in commercial clofibrate preparations and the pharmacologic effects of 4-CP have not yet been widely established. We have examined the dose-dependent effects of oral 4-CP and clofibrate administration on selected hepatic parameters and on serum glucose, cholesterol, and triglyceride concentrations in male rats. 4-CP treatment (0.00125-0.08 mmol/kg, twice a day) of rats for 2 weeks increased hepatic microsomal protein (20-30%) and cytochrome P-450 (20-190%) contents without changing liver/body weight ratios. Both 4-CP (0.0025 mmol/kg body wt, twice a day) and CPIB (0.4 mmol/kg body wt, twice a day) treatment to rats for 2 weeks caused significant elevations in microsomal cytochrome P-450 content and in the maximal activities of ethylmorphine, aminopyrine, and benzphetamine N-demethylase, but not in the activity of zoxazolamine 6-hydroxylase. With the same dose of 4-CP, time-dependent increases in hepatic microsomal protein, cytochrome P-450, and the activity of benzphetamine N-demethylase were observed for a 4-week period, and the induction of hepatic microsomal benzphetamine N-demethylase activity by 4-CP was associated with an increased enzyme synthesis. 4-CP treatment produced a marked morphologic change in liver cell ultrastructure, including a proliferation of mitochondria and endoplasmic reticulum at lower 4-CP doses. A clustering of intracellular organelles (mitochondria and endoplasmic reticulum) and a foamy cytoplasm were seen at doses greater than 0.01 mmol/kg, twice a day for 2 weeks, and at 0.0025 mmol/kg, twice a day for greater than 4 weeks. The effects of 4-CP and clofibrate on fasting blood glucose and fasting serum lipid levels were also monitored throughout an 8-week period. Both 4-CP (0.005 mmol/kg body wt, twice a day) and clofibrate (0.2 mmol/kg body wt, twice a day) produced significant elevations in fasting serum glucose levels, but this dosage of 4-CP did not alter serum lipid and lipoprotein parameters, whereas clofibrate significantly reduced serum total cholesterol and high density lipoprotein cholesterol levels. These results lead us to conclude that 4-CP does not contribute to the antilipidemic effects of clofibrate.  相似文献   

4.
Contents of hepatic microsomal protein, aminopyrine N-demethylase, acetanilide hydroxylase, aniline hydroxylase, hydrogen peroxide formation, cytochrome-c-reductase, cytochrome b5 and cytochrome P-450 were examined in control, phenobarbital (PB), 3-methylcholanthrene (3-MC) and 1, 1, 1-trichloro-2, 2-bis(p-chlorophenyl)ethane (DDT) treated group of 1-28 days old chickens. Increase in aminopyrine N-demethylase, acetanilide hydroxylase, aniline hydroxylase, cytochrome-c-reductase, cytochrome b5 and cytochrome P-450 was noticed at all stages of development during administration of PB and 3-MC. But these enzyme activities were not always paralleled by increase in age. Aminopyrine N-demethylase was increased in early stages only during DDT administration, which indicates that the form of cytochrome P-450, responsible for aminopyrine N-demethylation is present in early stages only. However, acetanilide hydroxylase was decreased in all stages of development, in postnatal development the basal activities of the enzymes for various substrates do not exhibit identical pattern, the degree of inducibility by inducers varied in relation to age of animal. Hydrogen peroxide formation increased in all stages of developing chickens due to the administration of PB and DDT. It however decreased due to 3-MC administration which may be due to induction of high spin cytochrome P-450.  相似文献   

5.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

6.
Previous work has established the marked potentiation of CCl4 hepatoxicity by prior exposure to chlordecone (CD). This study was conducted to determine if prior exposure to CD results in enhancement of CCl4-induced destruction of the hepatic microsomal mixed-function oxygenase (MFO) system. Male Sprague-Dawley rats received a single oral dose of CD (10 mg/kg) or corn oil vehicle alone (1 ml/kg) 24 hr prior to a single ip injection of CCl4 (0-100 microliter/kg). Mirex (M; 10 mg/kg) and phenobarbital (PB; 80 mg/kg/day for two days) were used as negative and positive controls respectively for the potentiation of CCl4 hepatotoxicity. Hepatotoxicity was evaluated 24 hrs after CCl4 administration by elevations of three serum enzymes (GPT, GOT, and ICD). The key hepatic microsomal MFO parameters measured were microsomal protein, cytochrome P-450 content, glucose-6-phosphatase (G-6-Pase), and aminopyrine demethylase (APD). As previously demonstrated using a subchronic dietary pretreatment protocol, CD potentiated CCl4 hepatotoxicity over a range of CCl4 doses to a greater extent than PB or M, as judged by elevations in serum enzymes. PB caused the greatest increase in total P-450 content and the greatest increase in CCl4-mediated destruction of microsomal protein and APD activity. M caused the least destruction of total hepatic cytochrome P-450, despite the same level of cytochrome P-450 as in the PB group. CD treatment caused the greatest decrease in G-6-Pase activity in comparison to PB or M pretreatments and a similar degree of P-450 destruction as observed with the PB group. These findings suggest that in general, CCl4-induced destruction of hepatic MFO parameters measured in this study is disproportional to the known degree of potentiated hepatotoxicity by the pretreatments and does not accurately reflect the potentiation of CCl4 hepatotoxicity by CD.  相似文献   

7.
1. In Sprague-Dawley (SD) rats treated for 7 days with malotilate (MAL:250 mg/kg, p.o.), cytochrome P-450 and b5 contents, aminopyrine N-demethylase and heme oxygenase activities were significantly increased. In Wistar rats, cytochrome b5 content and heme oxygenase and delta-aminolevulinic acid synthetase activities were found to be significantly increased. 2. Among the antipyrine metabolites excreted in urine during the 24 hr after antipyrine (100 mg/kg, i.p.) administration, norantipyrine increased significantly in Sprague-Dawley rats, while a significant increase of 4-hydroxyantipyrine was observed in Wistar rats. 3. The serum dimethadione/trimethadione ratio was only found to be significantly increased in Sprague-Dawley rats. 4. These results indicate that malotilate may have inducible effects on hepatic drug metabolizing enzymes, and that it affects the various cytochrome P-450 isozymes from different strains of rat in different ways.  相似文献   

8.
A single dose of cadmium sulphate (2 mg/kg, ip) produced variable effects on the components of hepatic microsomal enzyme system in untreated, phenobarbital and 3-methyl cholanthrene pretreated rats. Measurements of the activities of these components showed that phenobarbital pretreatment prevented the decrease in the specific activity of benzphetamine demethylase, as well as decrease in the contents of cytochrome P-450 and phosphatidyl choline seen in rats given cadmium alone. In contrast, prior administration of 3-methyl cholanthrene did not protect against the inhibitory effect of the metal on cytochrome P-450 and phospholipid components. However, the dose of cadmium used in this study did not appear to have any significant effect on the activities of cytochrome P-450 reductase and aniline hydroxylase.  相似文献   

9.
Disulfiram and diethyldithiocarbamate were administered to rats for 4 days alone (300 mg/kg, daily, per os) or in combination with phenobarbital (80 mg/kg, daily, i.p.), in order to observe the effects of these compounds on the microsomal membrane components and on the mixed-function oxygenase system. Both disulfiram and diethyldithiocarbamate increased the liver to body weight ratio, and the total hepatic protein content. Disulfiram significantly increased also the microsomal protein and phospholipid contents. Diethyldithiocarbamate and disulfiram partially prevented the increase of microsomal protein and phospholipid contents caused by phenobarbital. Disulfiram and diethyldithiocarbamate decreased the amount of cytochrome P-450 and P-420, and the activity of p-nitroanisole O-demethylase. These changes were more pronounced after diethyldithiocarbamate than after disulfiram treatment. On the contrary, the activity of NADPH-cytochrome c reductase was enhanced only by disulfiram. The induction by phenobarbital of cytochrome P-450 and p-nitrosanisole O-demethylase was partially prevented on concomitant treatment with disulfiram and diethyldithiocarbamate. These compounds. however, had an additive effect with phenobarbital in enhancing the microsomal NADPH-cytochrome c reductase activity.  相似文献   

10.
The presence of cytochrome P-450 and associated mono-oxygenase activities was examined in brain microsomes from male and female mice. Although the cytochrome P-450 level in male mouse brain was very low as compared with mouse liver, the aminopyrine N-demethylase and morphine N-demethylase specific activities in male mouse brain were much higher than those observed in mouse liver. Ethoxycoumarin O-de-ethylase and aniline hydroxylase activities were, however, not detected in mouse brain. Sex-related differences were observed in both the cytochrome P-450 levels and aminopyrine N-demethylase activity in mouse brain, the levels of both being higher in male mouse brain as compared with female mouse brain. Aminopyrine N-demethylase activity in mouse brain microsomes was dependent on the presence of oxygen and NADPH and could be inhibited by piperonyl butoxide, N-octyl imidazole and carbon monoxide. Antiserum raised to the phenobarbital-inducible form of rat liver cytochrome P-450 [P-450(b+e)] inhibited mouse brain aminopyrine N-demethylase activity by around 80+ mouse brain microsomal protein exhibited cross-reactivity against this antiserum when examined by Ouchterlony double diffusion and immunoblotting. The present results indicate the presence of a phenobarbital-inducible form of cytochrome P-450 (or a form of cytochrome P-450 that is similar immunologically) in mouse brain microsomes, which is associated with a sex-related difference.  相似文献   

11.
Male S-D rats were maintained on normal powdered diet or on the same diet containing 10 ppm chlordecone or 225 ppm phenobarbital for 15 days. On day 15, all the animals received a single ip injection of either corn oil or a subtoxic dose of CCl4 (25-200 microliter/kg) in corn oil vehicle (1 ml/kg). The animals were sacrificed 12 hrs later. Liver microsomal cytochrome P-450 and Ca++ levels in whole liver, mitochondria, microsomes and cytosol were determined. Cytochrome P-450 induction was greater with phenobarbital pretreatment than with chlordecone but the CCl4 induced destruction of cytochrome P-450 was almost similar in both groups and progressive with the dose of CCl4. CCl4 given to animals on normal diet in a dose range of 25-200 microliter/kg did not significantly alter the cytochrome P-450 levels. These findings are consistent with greater bioactivation of CCl4 after the above two pretreatments. There was a massive accumulation of Ca++ in chlordecone and phenobarbital pretreated animals after CCl4 administration. Cytosolic Ca++ levels remained high despite the mitochondrial and microsomal sequestration. This perturbation of hepatocellular Ca++ homeostasis might lead to hepatic lesion and hepatic failure. Chlordecone or phenobarbital alone do not alter hepatic Ca++ levels. These findings suggest that excessive accumulation of Ca++ may be causally related to the progression of hepatotoxic response due to CCl4 in chlordecone treated animals.  相似文献   

12.
When methadone HCl (30 mg/kg, po) was given acutely to mice, it was found to inhibit drug metabolism as evidenced by a prolongation of hexobarbital sleeping time and zoxazolamine paralysis time. Pharmacokinetic studies revealed that this acute dose of the narcotic analgesic could also prolong the plasma half-life of aminopyrine without any change in its volume of distribution. When added to the incubation mixture containing 10,000 g mouse liver supernatant fraction and a complete system for measuring aminopyrine N-demethylase or aniline hydroxylase, methadone showed a dose-dependent inhibition of the enzymes; the former enzyme was inhibited to a greater extent than the latter one. However, subacute treatment of mice with methadone HCl (30 mg/kg, po, twice daily for 3 days) resulted in increases in liver weight, microsomal protein, and cytochrome P-450 content in consonant with the increased activities of four hepatic drug-metabolizing enzymes: aminopyrine N-demethylase, aniline hydroxylase, p-nitroanisole, O-demethylase, and benzphetamine N-demethylase. Moreover, both hexobarbital sleeping time and zoxazolamine paralysis time were shortened. The plasma half-life of aminopyrine was decreased. These changes were prevented by simultaneous administration of puromycin diHCl (80 mg/kg, ip). Methadone thus seems to act in a manner very similar to that of propoxyphene or SKF-525A, acting as a potent inhibitor of hepatic drug metabolism when given acutely and as an inducer when given subacutely.  相似文献   

13.
The effect of the insecticides, mirex and chordecone (Kepone), on the cytochrome P-450 monooxygenase system in C57BL/6N mouse liver microsomes was studied. Mice were treated intraperitoneally with low (6 mg/kg) and high (30 mg/kg) doses of mirex and chlordecone in corn oil for 2 days. For comparison, mice were also treated with either phenobarbital (PB) or 3-methylcholanthrene (3-MC). All treatments significantly increased the hepatic microsomal P-450 content over that of controls. Benzphetamine N-demethylase, ethoxyresorufin O-deethylase, benzo[a]pyrene hydroxylase, and acetanilide hydroxylase activities were also determined. Mirex and chlordecone resembled phenobarbital with respect to the induction of monooxygenase activities. Immunoquantitation with antibodies to purified P-450 IIB1 (Pb-induced P-450) and P-450 IA1 (3-MC-induced P-450) indicated that mirex and chlordecone induced P-450 IIB1 in a dose-dependent manner. The high dose of mirex also induced a small amount of a protein cross reacting with the antibody to IA1. The induction of this isozyme did not, however, contribute significantly to the monooxygenase activities measured.  相似文献   

14.
The optimum conditions (pH, microsomal protein amount and substrate concentration) of guinea-pig liver, lung and kidney microsomal aniline 4-hydroxylase, ethylmorphine N-demethylase and benzo[a]pyrene hydroxylase activities were determined. Male guinea-pigs weighing 500-700 g were administered 3-methylcholanthrene (25 mg/kg, i.p. 3 days), phenobarbital (75 mg/kg, i.p. 3 days), pyrethrum (120 mg/kg, i.p. 2 days) and 2,4,5-T isooctylester (200 mg/kg, i.p. 3 days). 3-Methylcholanthrene treatment caused significant increases in liver microsomal benzo[a]pyrene hydroxylase and kidney microsomal aniline 4-hydroxylase activities. However, with phenobarbital treatment the only significant increase was observed in liver microsomal ethylmorphine N-demethylase activity. Pyrethrum treatment decreased kidney microsomal ethylmorphine N-demethylase activity significantly. 2,4,5-T isooctylester treatment increased liver microsomal aniline 4-hydroxylase and lung microsomal ethylmorphine N-demethylase activities significantly. Liver microsomal NADPH-cytochrome c reductase activity was increased significantly by phenobarbital and pyrethrum treatment. The other treatments did not cause any significant changes in microsomal NADPH-cytochrome c reductase activities of liver, lung and kidney. Cytochrome P-450 content of guinea-pig liver microsomes were increased significantly about 2.5-fold and 2-fold by treatment with 3-methylcholanthrene and phenobarbital, respectively. 3-Methylcholanthrene also caused 1 nm spectral shift in the absorption maxima of CO difference spectrum of the dithionite-reduced liver microsomal cytochrome P-450, forming P-449.  相似文献   

15.
To study the relationship between the dose of phenobarbital (PB) and the magnitude of its effects on microsomal enzymes, cytochrome P-450, UDP-glucuronyl transferase (UDPGT), and glucose-6-phosphatase (G6P) activities were determined in liver homogenate and microsome preparations from control rats and rats treated for 6 days with PB at doses ranging from 1 to 125 mg/kg/day. Both P-450 and UDPGT activities were enhanced by PB in a dose-related fashion. However, while the lowest dose of the drug to produce significant induction of both enzymes was the same (3 mg/kg), maximal induction of P-450 (214%) and UDPGT (285%) was obtained with different doses of PB, namely 75 and 125 mg/kg, respectively. UDPGT induction could equally be demonstrated regardless of whether "native" enzyme or enzyme activated by UDP-N-acetyl glucosamine, digitonin or deoxycholate was employed. In contrast to these inducing effects of the drug on P-450 and UDPGT, PB treatment resulted in a dose-related inhibition of G6P activity. The inhibitory effect was observed with both "native" and deoxycholate-activated enzymes, and could be demonstrated whether the data were expressed as enzyme specific activity (nanomoles per minute per milligram microsomal protein) or as total G6P activity (micromoles per minute per 100 g body weight). These results indicate that: (I) enzyme induction by PB is dose-related; (ii) induction of both P-450 and UDPGT is obtained in the rat with doses of the drug similar to those given to man; and (iii) observed inhibition of G6P activity by PB does not solely reflect an enzymatic dilution secondary to the proliferated endoplasmic reticulum.  相似文献   

16.
The induction by triphenyldioxane (TPD) of cytochrome P-450 in rat liver microsomes was studied. It was demonstrated that TPD injection in a single dose (10 mg/kg of body mass) is associated with a marked induction of cytochromes P-450 b/e (cytochrome PB-forms) in rat liver microsomes and a significant increase in the benzphetamine-N-demethylase activity typical of cytochrome P-450b. In other words, TPD is a potent inducer of PB-type, the inducing effect being attained by an injection of a single dose of TPD which is by one order of magnitude less than that of phenobarbital. It can be assumed that this compound shows a high affinity for the hypothetical receptor responsible for cytochrome P-450b synthesis. It was shown also that TPD does not induce the monooxygenase system of mouse liver, whereas 1,4-bis[2-(dichloropyridyloxy)]benzene (DPB) is a potent inducer of PB-type in mice, being fairly ineffective in rats. Hence, the species-specific effect of TPD and DPB appears to be opposite.  相似文献   

17.
Reductions in cytochrome P-450 levels and aminopyrine N-demethylase activity of hepatic microsomes obtained from cardiomyopathic hamsters (BIO 14.6) occurred at all stages of the disease before the development of congestive heart failure (CHF). Cytochrome b5 levels were reduced only in animals with CHF when compared with age-matched controls (BIO.RB). Total microsomal protein and p-nitrophenol glucuronidation were not affected by the disease process. We conclude that the reduction in cytochrome P-450 levels and N-demethylase activity in cardiomyopathic hamsters is not a consequence of CHF, but is one of the manifestations of the disease process.  相似文献   

18.
1. Effect of energy and/or protein intake on a mixed function oxidase system (MFO) in hepatic microsomes was studied in male broiler chicks. 2. Contents of cytochrome P-450 and b5 in 72 hr starvation were larger than those in 12 and 36 hr starvations. 3. Reduction of energy and protein intake did not change the MFO, except cytochrome P-450. 4. Reduction of energy intake under the same protein intake increased the cytochrome P-450 content and aminopyrine N-demethylase activity. An increase in protein intake under the same energy intake also increased the cytochrome P-450 content.  相似文献   

19.
The interferon inducing agents, poly rI·rC and tilorone, cause a marked depression of hepatic cytochrome P-450-linked monooxygenase systems. Ascorbate synthesis and hepatic monnoxygenase systems are induced by phenobarbital and 3-methylcholanthrene. Poly rI·rC and tilorone suppressed the induction of ascorbate synthesis, P-450 and monooxygenase activity (ethylmorphine N-demethylase and benzo[a]pyrene hydroxylase) by phenobarbital. 3-Methylcholanthrene-induced ascorbate synthesis was suppressed by poly rI·rC, but equivocal results were obtained with tilorone. Induction of P-450 by 3-methylcholanthrene was suppressed completely by poly rI·rC or tilorone, but that of benzo[a]pyrene hydroxylase was lowered by only 40%, thus demonstrating the selective depressive action of interferon inducing agents on different species of P-450.  相似文献   

20.
Perfluorodecalin was incorporated into phospholipid liposomes and injected intraperitoneally in various dozes. The maximal cytochrome P-450 induction is reached 48 hours after perfluorodecalin injection. Cytochrome P-450 content increases 4 times after perfluorodecalin injection in dose of 0.6 ml/kg in homogenate, and 6 times after perfluorodecalin injection in a dose of 0.4 ml/kg in microsomes. Phenobarbital and perfluorodecalin induce several cytochrome P-450 isozymes and cause the appearance of a new isozyme with mass 56 kD absent in microsomes of intact CBA mice. Perfluorodecalin induction strongly increased the rate of NADPH-dependent aminopyrine nN-demethylation (6-7 times per mg of microsomal protein and 1.5 times per nmol cytochrome P-450). The rate of NADPH-dependent hydroxylation of aniline was not affected by perfluorodecalin induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号